
TRAINING METHODOLOGY FOR A MULTIPLICATION FREE
IMPLEMENTABLE OPERATOR BASED NEURAL NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OZAN YILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2017





Approval of the thesis:

TRAINING METHODOLOGY FOR A MULTIPLICATION FREE
IMPLEMENTABLE OPERATOR BASED NEURAL NETWORKS

submitted by OZAN YILDIZ in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Fatoş T. Yarman Vural
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Assoc. Prof. Dr. Uluç Saranlı
Computer Engineering Department, METU

Prof. Dr. Fatoş T. Yarman Vural
Computer Engineering Department, METU

Assoc. Prof. Dr. Murat Manguoğlu
Computer Engineering Department, METU

Assist. Prof. Dr. Emre Akbaş
Computer Engineering Department, METU

Assist. Prof. Dr. Tolga Çukur
Electrical and Electronics Engineering Dept., Bilkent University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: OZAN YILDIZ

Signature :

iv



ABSTRACT

Training Methodology for a Multiplication Free Implementable Operator
Based Neural Networks

Yıldız, Ozan
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş T. Yarman Vural

August 2017, 142 pages

Technological advances opened new possibilities for computing environments includ-

ing smart phones, smart appliances, and drones. Engineers try to make these devices

smart, self-sustaining through usage of machine learning techniques. However, most

of the mobile environments have limited resources like memory, computing power

and battery, and consequently traditional machine learning algorithms which require

relatively high resources might not be suitable for them. Therefore, efficient versions

of traditional machine learning algorithms receives interest for these kinds of envi-

ronments. Recently, an operator named the ef-operator, which avoids multiplication

is proposed as an alternative to classic vector multiplication. Recent studies, showed

that ef-operator can be used on machine learning problems with small degradation

on performance to gain energy efficiency. This thesis concerns with the application

of this ef-operator over artificial neural networks. An artificial neural network ar-

chitecture based of this ef-operator proposed which can approximate any Lebesgue

integrable function. Applicability of standard backpropagation algorithm for this new

v



network architecture is analyzed and a modified version of backpropagation algorithm

with a line search step proposed for training this network architecture.

Keywords: Artificial Neural Networks, Mulitplication Free Operator, Backpropaga-

tion, Line Search

vi



ÖZ

ÇARPMASIZ HESAPLANABİLEN OPERATÖR BAZLI YAPAY SİNİR
AĞLARI İÇİN ÖĞRENME METODU

Yıldız, Ozan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş T. Yarman Vural

Ağustos 2017, 142 sayfa

Teknolojik gelişmeler sonucu drone, akıllı telefon ve ev aletleri gibi cihazlarda he-

saplamalar yapılmaya başlandı. Mühendisler, bu cihazları makine öğrenme teknikleri

yardımıyla akıllı ve kendi kendine idare eden bir hale getirmeye çalışıyor. Ancak, bu

cihazların büyük çoğunluğu sınırlı hafıza, hesaplama kapasitesi ve bataryaya sahip.

Dolayısıyla, fazla kaynak gerektiren standart makine öğrenme teknikleri bu cihazlar

için çok uygun değil. Bu nedenle, enerji verimli makine öğrenme teknikleri bu cihaz-

larda kullanılmak üzere ilgi görmektedir. Yakın zamanda, klasik vektör çarpımı yerine

ef-operatör isimli çarpmadan kaçınan bir operatör önerildi. Bu operatörün makine

öğrenme tekniklerinde, ufak bir performans kaybıyla, enerji verimliliğini arttırmak

için kullanılabileceği geçmiş çalışmalarda gösterilmiş. Bu tezde, ef-operatörünün ya-

pay sinir ağlarında kullanılabilirliği irdelendi. Lebesgue integrallenebilir fonksiyon-

ları yakınsama yeteneğine sahip ef-operatörüne dayalı bir yapay sinir ağı yapısı öne-

risi önerildi. Önerilen bu yapay sinir ağı yapısını eğitmek için standart geri yayılım

vii



algoritması incelendi ve bu yapay sinir ağlarının eğitmek için doğrusal arama içeren

bir geri yayılım algoritması önerildi.

Anahtar Kelimeler: Yapay Sinir Ağları, Çarpmasız Hesaplanabilen Operatör, Geri
Yayılım, Doğrusal Arama

viii



To my family

ix



ACKNOWLEDGMENTS

Foremost, I would like thank to my thesis advisor, Prof. Dr. Fatoş T. Yarman-Vural,
for her endless support. I am thankful for the freedom she gave me during research
and her comments when I am stuck. I would not be able to complete this work without
her support, insights and helpful comments.

I would like to also thank to Prof. Dr. Enis A. Çetin for his guidance over energy
efficient neural networks and ef-operator. This work would not be possible without
his suggestions.

Beside my thesis advisor, Prof. Dr. Fatoş T. Yarman-Vural and Prof. Dr. Enis A.
Çetin, I would like to thank rest of my jury committee members, Assoc. Prof. Dr.
Uluç Saranlı, Assoc. Prof. Dr. Murat Manguoğlu, Assist. Prof. Dr. Emre Akbaş,
and Assist. Prof. Dr. Tolga Çukur for their encouragement, helpful comments, and
challenging questions.

In addition to my jury committee members, I would like to thank all professors, whom
I took a course from during my studies at METU, for the knowledge and perspective
they given to me. I would like to thank Dr. Muhiddin Uğuz, Prof. Dr. Gülin Er-
can, Assoc. Prof. Dr. Ali Ulaş Özgür Kişisel and other professors from METU
mathematics deparment for the mathematical background they gave me during my
undergraduate education and I would like to thank Prof. Dr. Faruk Polat, Prof. Dr. İs-
mail Hakkı Toroslu, Assoc. Prof. Dr. Sinan Kalkan and other professors from METU
computeger engineering department for the computer science background they gave
during my undergraduate and master education. Lastly, I would like to Assoc. Prof.
Dr. Azer Kerimov, Prof. Dr. Şahin Emrah for their continuous guidance over years.

I would like to also thank my friends for their support. I would like to specifically
thank to Imagelab members, Barış Nasır, Arman Afrasiyabi, Dr. Itır Önal Ertuğrul,
Hazal Moğultay, Burak Velioğlu, Baran Barış Kıvılcım, and Abdullah Al-shihabi.
Working with them for last two years was a honor. I am grateful to my friends Hüseyin
Aydın and Irmak Doğan for their help during my master studies. I also want to Cansu
Yılmaz, Bensu Koçyiğitoğlu and Hande İbili for their support. I would not make it
most of the challenges I encountered without their moral support. Lastly, I would
like to thank my teammates from METU Orienteering and Navigation Team. I do not
believe, I would make the college without their presence, continuous support and fun
times we spent with.

x



Finally, I would like to my family, my dear father Kanber, my dear mother Esma and
my dear sister Burcu for their endless support and encouragements. Without their
continuous support through all my life, I would not be able to achieve half of the
things I achieved.

Also, I acknowledge the support of TÜBİTAK (The Scientific and Technological Re-
search Council of Turkey) BİDEB through 2210-E graduate student fellowship during
my M.Sc. education.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . 3

2 BRIEF OVERVIEW OF ARTIFICIAL NEURAL NETWORKS . . . 5

2.1 A Brief History of Artificial Neural Networks . . . . . . . . 5

2.2 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

xii



2.3 Feed-forward Neural Networks . . . . . . . . . . . . . . . . 7

2.4 Energy Efficient Neural Network Variants . . . . . . . . . . 8

2.4.1 Neural Networks with Restricted Weights . . . . . 8

2.4.2 Approximate Computations . . . . . . . . . . . . 9

2.5 Representation Capabilities of Artificial Neural Networks . . 11

2.6 Training Methods for Artificial Neural Networks . . . . . . . 12

2.6.1 Back Propagation . . . . . . . . . . . . . . . . . . 13

2.6.2 Gradient Descent Optimization Methods . . . . . . 14

2.6.2.1 Stochastic Gradient Descent . . . . . . 14

2.6.2.2 Adaptive Moment Estimation . . . . . 15

2.6.3 Initialization of Neural Networks and Training . . 16

2.6.3.1 Selection of Topology . . . . . . . . . 17

2.6.3.2 Selection of Activation Function . . . 17

2.6.3.3 Selection of Initial Parameters . . . . 18

2.6.3.4 Selection of Objective Functions . . . 18

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 EF-OPERATOR AND NOVEL NEURAL NETWORK ARCHITEC-
TURE BASED ON EF-OPERATOR . . . . . . . . . . . . . . . . . . 21

3.1 EF-operator . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Partial Derivatives of EF-operator . . . . . . . . . 23

3.1.2 Multiplication-free Implementation of EF-operator 25

xiii



3.1.3 Properties of EF-operator . . . . . . . . . . . . . . 27

3.2 EF Neuron and EF Neural Networks . . . . . . . . . . . . . 28

3.3 Representation Capabilities of EF Neural Networks . . . . . 31

3.4 Behavior of EF Neural Networks from Parameters Perspective 42

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 49

4 MODIFIED BACKPROPAGATION ALGORITHM WITH LINE SEARCH
FOR TRAINING EF NEURAL NETWORKS . . . . . . . . . . . . . 51

4.1 A case study: Learning Linear Functions . . . . . . . . . . . 51

4.2 Backpropagation with Line Search . . . . . . . . . . . . . . 54

4.3 Computational Complexity of BLS . . . . . . . . . . . . . . 56

4.4 Convergence of Backpropagation with Line Search Algorithm 57

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 60

5 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Learning Linear Functions Revisited . . . . . . . . . . . . . 61

5.2 Learning XOR Problem by EFNN . . . . . . . . . . . . . . 62

5.2.1 Experimental Design . . . . . . . . . . . . . . . . 64

5.2.2 Performances of EFNN with Standard Backprop-
agation and BLS . . . . . . . . . . . . . . . . . . 65

5.3 Learning UCI Data Sets . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Overview of Data Sets . . . . . . . . . . . . . . . 68

5.3.1.1 Overview of Abalone Data Set . . . . 68

xiv



5.3.1.2 Overview of Connectionist Bench Data
Set . . . . . . . . . . . . . . . . . . . 70

5.3.1.3 Overview of Ecoli Data Set . . . . . . 71

5.3.1.4 Overview of Glass Identification Data
Set . . . . . . . . . . . . . . . . . . . 72

5.3.1.5 Overview of Iris Data Set . . . . . . . 73

5.3.1.6 Overview of Leaf Data Set . . . . . . 74

5.3.1.7 Overview of Letter Recognition Data
Set . . . . . . . . . . . . . . . . . . . 75

5.3.1.8 Overview of Wine Data Set . . . . . . 77

5.3.1.9 Overview of Yeast Data Set . . . . . . 78

5.3.2 Experimental Design . . . . . . . . . . . . . . . . 79

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3.1 Abalone Data Set . . . . . . . . . . . 83

5.3.3.2 Connectionist Bench Data Set . . . . . 87

5.3.3.3 Ecoli Data Set . . . . . . . . . . . . . 91

5.3.3.4 Glass Identification Data Set . . . . . 95

5.3.3.5 Iris Data Set . . . . . . . . . . . . . . 99

5.3.3.6 Leaf Data Set . . . . . . . . . . . . . 104

5.3.3.7 Letter Recognition Data Set . . . . . . 108

5.3.3.8 Wine Data Set . . . . . . . . . . . . . 112

5.3.3.9 Yeast Data Set . . . . . . . . . . . . . 116

xv



5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . 120

5.4 MNIST Data Set . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Experimental Design . . . . . . . . . . . . . . . . 121

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . 124

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 127

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . 129

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 131

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xvi



LIST OF TABLES

TABLES

Table 5.1 Description of XOR operator. . . . . . . . . . . . . . . . . . . . . . 62

Table 5.2 Least mean squared error achieved by standard backpropagation,
λt “ 8, BLS with constant λ, λt “ 1 and BLS with exponentially decay-
ing λ, λt “ 1 ` δ2

t where δ “ 10´8 on XOR problem using ADAM and
SGD optimizers with ReLU and identity activation functions for networks
consisting 2 and 3 hidden layers which contain either 2 or 3 neurons. . . . 66

Table 5.3 The general structure of the entries of feature vectors of abalone
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 5.4 The number of samples of all 28 classes of abalone data set. . . . . . 69

Table 5.5 The general structure of the entries of feature vectors of connection-
ist bench data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 5.6 The number of samples of all 11 classes of connectionist bench data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 5.7 The general structure of the entries of feature vectors of ecoli data set. 71

Table 5.8 The number of samples of all 8 classes of ecoli data set. . . . . . . . 72

Table 5.9 The general structure of the entries of feature vectors of glass iden-
tification data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 5.10 The number of samples of all 6 classes of glass identification data set. 73

Table 5.11 The general structure of the entries of feature vectors of iris data set. 73

Table 5.12 The number of samples of all 3 classes of iris data set. . . . . . . . . 74

Table 5.13 The general structure of the entries of feature vectors of leaf data set. 74

Table 5.14 The number of samples of all 30 classes of leaf data set. . . . . . . . 75

xvii



Table 5.15 The general structure of the entries of feature vectors of letter recog-
nition data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 5.16 The number of samples of all 26 classes of letter recognition data set. 76

Table 5.17 The general structure of the entries of feature vectors of wine data set. 77

Table 5.18 The number of samples of all 3 classes of wine data set. . . . . . . . 78

Table 5.19 The general structure of the entries of feature vectors of yeast data set. 78

Table 5.20 The number of samples of all 10 classes of yeast data set. . . . . . . 79

Table 5.21 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on abalone data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 5.22 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
abalone data set, while optimizing mean squared error (MSE) and cross
entopy using ADAM and SGD optimizers with ReLU and identity activa-
tion functions for 2 hidden layered networks whose hidden layers contain
100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 5.23 The number of different hyper-parameter sets used on trials given
in Figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 5.24 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on connectionist bench data set. . . . . . . . . . . . . . . . . . . . . . . . 87

xviii



Table 5.25 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
vowel data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 100
many neurons and 3 hidden layered networks whose hidden layers contain
100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 5.26 The number of different hyper-parameter sets used on trials given
in Figure 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 5.27 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on ecoli data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table 5.28 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
ecoli data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 100
many neurons and 3 hidden layered networks whose hidden layers contain
100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 5.29 The number of different hyper-parameter sets used on trials given
in Figure 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 5.30 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on glass identification data set. . . . . . . . . . . . . . . . . . . . . . . . 95

xix



Table 5.31 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
glass data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 100
many neurons and 3 hidden layered networks whose hidden layers contain
100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 5.32 The number of different hyper-parameter sets used on trials given
in Figure 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 5.33 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 50 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on iris data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 5.34 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100

and BLS with exponentially decaying λ, λt “ 1 ` δ2
t where δ “ 10´8

on iris data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 50
many neurons and 3 hidden layered networks whose hidden layers contain
100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 5.35 The number of different hyper-parameter sets used on trials given
in Figure 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 5.36 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on leaf data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xx



Table 5.37 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
leaf data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 100
many neurons and 3 hidden layered networks whose hidden layers contain
100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 5.38 The number of different hyper-parameter sets used on trials given
in Figure 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 5.39 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on letter recognition data set. . . . . . . . . . . . . . . . . . . . . . . . . 108

Table 5.40 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
letter data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 100
many neurons and 3 hidden layered networks whose hidden layers contain
100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 5.41 The number of different hyper-parameter sets used on trials given
in Figure 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 5.42 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 50
many neurons employing identity and ReLU activation functions trained
on wine data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xxi



Table 5.43 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
wine data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 100
many neurons and 3 hidden layered networks whose hidden layers contain
50 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 5.44 The number of different hyper-parameter sets used on trials given
in Figure 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Table 5.45 Average test classification accuracy achieved by classic feed-forward
neural networks (FNN) and ef operator based neural networks (EFNN)
when 2 hidden layered networks whose hidden layers contain 100 many
neurons, and 3 hidden layered networks whose hidden layers contain 100
many neurons employing identity and ReLU activation functions trained
on yeast data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 5.46 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
yeast data set, while optimizing mean squared error (MSE) and cross en-
topy using ADAM and SGD optimizers with ReLU and identity activation
functions for 2 hidden layered networks whose hidden layers contain 100
many neurons and 3 hidden layered networks whose hidden layers contain
100 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Table 5.47 The number of different hyper-parameter sets used on trials given
in Figure 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table 5.48 Class distribution for mnist data set . . . . . . . . . . . . . . . . . . 121

Table 5.49 Test classification accuracy achieved by standard backpropagation,
λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and
BLS with exponentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on
MNIST data set, while optimizing mean squared error (MSE) and cross
entopy using ADAM and SGD optimizers with ReLU and identity activa-
tion functions for 2 hidden layered networks whose hidden layers contain
800 many neurons and 3 hidden layered networks whose hidden layers
contain 800 many neurons. . . . . . . . . . . . . . . . . . . . . . . . . . 125

xxii



LIST OF FIGURES

FIGURES

Figure 2.1 Visual representation of a perceptron which maps an input d0-
dimensional real input vector x to an output vector ppxq “ wTx` b. . . . 7

Figure 3.1 Behavior of EF-operator between two 1-D vectors in the interval
[-10, 10] as 3-D graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2 Visual representation ef-operator based neural networks (EFNN).
Note that, input and output layers perform standard vector multiplication,
whereas hidden layers perform ef-operator. . . . . . . . . . . . . . . . . . 31

Figure 3.3 2-D mappings computed by randomly generated EFNNs using ac-
tivation functions identity and ReLU with different network topologies.
Topologies given in left column shows the number of neurons used on
each layer, including input neurons. . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.4 Visual representation of a sign computing unit. . . . . . . . . . . . 35

Figure 4.1 Change of mean squared error during training EFNN with standard
backpropagation algorithm to approximate the linear function y “ 2x. . . 53

Figure 5.1 Change of mean squared error during training EFNN with standard
backpropagation algorithm and BLS to learn the linear function y “ 2x. . 63

Figure 5.2 The change of mean squared error with respect to iteration for trials
achieving minimal mean squared error when standard backpropagation,
λt “ 8, BLS with constant λ, λt “ 1, and BLS with exponentially
decaying λ, λt “ 1 ` δ2

t where δ “ 1 ´ 10´8, algorithms with ADAM
used for training 3 hidden layered EFNNs whose hidden layers consist of
3 neurons with ReLU activation function to approximate XOR function. . 67

xxiii



Figure 5.3 The change of average cross entropy with respect to iteration for
trials achieving maximal classification performance on training data when
standard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
3 hidden layered EFNNs whose hidden layers consist of 100 neurons with
ReLU activation function over abalone data set. . . . . . . . . . . . . . . 86

Figure 5.4 The change of average cross entropy with respect to iteration for
trials achieving maximal classification performance on training data when
standard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
3 hidden layered EFNNs whose hidden layers consist of 100 neurons with
ReLU activation function over connectionist bench data set. . . . . . . . . 90

Figure 5.5 The change of mean squared error with respect to iteration for trials
achieving maximal classification performance on training data when stan-
dard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
2 hidden layered EFNNs whose hidden layers consist of 100 neurons with
identity activation function over ecoli data set. . . . . . . . . . . . . . . . 94

Figure 5.6 The change of mean squared error with respect to iteration for trials
achieving maximal classification performance on training data when stan-
dard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
2 hidden layered EFNNs whose hidden layers consist of 100 neurons with
identity activation function over glass identification data set. . . . . . . . . 98

Figure 5.7 The change of mean squared error with respect to iteration for trials
achieving maximal classification performance on training data when stan-
dard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
3 hidden layered EFNNs whose hidden layers consist of 100 neurons with
ReLU activation function over iris data set. . . . . . . . . . . . . . . . . . 103

xxiv



Figure 5.8 The change of average cross entropy with respect to iteration for
trials achieving maximal classification performance on training data when
standard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
3 hidden layered EFNNs whose hidden layers consist of 100 neurons with
identity activation function over leaf data set. . . . . . . . . . . . . . . . . 107

Figure 5.9 The change of average cross entropy with respect to iteration for
trials achieving maximal classification performance on training data when
standard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
3 hidden layered EFNNs whose hidden layers consist of 100 neurons with
ReLU activation function over letter recognition data set. . . . . . . . . . 111

Figure 5.10 The change of average cross entropy with respect to iteration for
trials achieving maximal classification performance on training data when
standard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
3 hidden layered EFNNs whose hidden layers consist of 50 neurons with
ReLU activation function over wine data set. . . . . . . . . . . . . . . . . 115

Figure 5.11 The change of mean squared error with respect to iteration for trials
achieving maximal classification performance on training data when stan-
dard backpropagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2,
λt “ 10, and λt “ 100, and BLS with exponentially decaying λ, λt “
1` δ2

t where δ “ 1´ 10´8, algorithms with ADAM are used for training
3 hidden layered EFNNs whose hidden layers consist of 100 neurons with
ReLU activation function over yeast data set. . . . . . . . . . . . . . . . . 119

Figure 5.12 The change of mean squared error on training data with respect
to iterations for trials with maximal classification accuracy on training
data with standard backpropagation using 2 hidden layers, each of which
containing 800 neurons. ReLU activation function and ADAM optimizer
is used for MNIST data set. . . . . . . . . . . . . . . . . . . . . . . . . . 126

xxv



LIST OF ALGORITHMS

ALGORITHMS

Algorithm 2.1 Backpropagation algorithm . . . . . . . . . . . . . . . . . . . 13

Algorithm 3.1 Naive multiplication-free computation of ef-operator between
two d-dimensional vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Algorithm 3.2 Multiplication-free computation of ef-operator between two d-
dimensional vectors for single precision floating-point numbers . . . . . . 27

Algorithm 4.1 Backpropagation with line search algorithm . . . . . . . . . . . 55

xxvi



LIST OF ABBREVIATIONS

ADAM Adaptive Modment Estimation Method

ANN Artificial Neural Network

BLS Backpropagation with Line Search

CNN Convolutional Neural Network

DCT Discrete Cosine Transformation

EFNN EF-operator based Neural Network

FNN Feed-forward Neural Network

FPGA Field-programmable gate array

MSE Mean Square Error

ReLU Rectified Linear Unit

RNN Recurrent Neural Netowrk

SCU Sign computing unit

SGD Stochastic Gradient Descent

xxvii



xxviii



CHAPTER 1

INTRODUCTION

Artificial neural networks are biologically inspired powerful machine learning algo-

rithms with a variety of application areas with relatively high success rates compared

to many popular statistical learning methods. ANNs can be used on various ma-

chine learning problems including classification, regression, prediction and function

approximation [58]. Improvements in the hardware capabilities and increase of avail-

able data allow ANNs to be used on many areas with human level precision. Recently,

ANNs are successfully applied to many real world learning problems including com-

puter vision, natural language processing, recommendation systems [51]. Increased

application areas of ANNs created demand for ANNs on mobile environments such as

mobile phones and drones which have limited resources. There are some applications

of ANNs on mobile environments, such as flight control, path estimation [13], obsta-

cle avoidance and human recognition [32] for unmanned aerial vehicles and drones.

There are ongoing research on making ANNs efficient so that they can be used on

systems with limited resources in addition to researches aiming to perform better

than state-of-the art techniques on systems designed to be used for computationally

intensive tasks.

The studies about making ANNs energy efficient are focusing on approximating mul-

tiplication operations and complex mathematical functions. A popular way of ap-

proximating multiplication operation is usage of low-precision floating-point num-

bers [84, 15] for the parameters of ANNs. The extreme case of low-precision is

binary parameters also received a lot of attention [16, 18, 20, 19, 70]. Approxima-

tions of complex mathematical functions are based on approximations with polyno-

1



mials and piece-wise linear functions [82, 46, 67, 14]. Approximations of complex

mathematical functions These studies showed that approximate calculations of ANNs

allows energy efficiency without sacrificing performance.

Recently, some energy efficient operator which avoids multiplication is proposed to

replace the classical operators such as inner product [83]. Ef-operator is proposed

in [83] is a binary operator designed to be energy-efficient through avoidance of

floating-point multiplication. It is initially proposed in the context of signal process-

ing [83] and afterwards, it is applied to various machine learning problems. Previous

work related to this operator shows interesting possibilities and usage areas including

artificial neural networks. However, most of these previous works focused on ap-

plicability of this operator to existing machine learning methods and evaluated these

methods through experiments. This thesis aims to reinforce results of previous stud-

ies with theoretical analysis and suggests a new training method for neural networks

based on ef-operator.

1.1 Main Contributions

The main contribution of this thesis is the inspection of applicability of the ef-operator

on artificial neural networks. We did this inpsection by defining ef-operator based

neural network, EFNN, and analyzing this new network. Analyze of this new network

includes inspection of the representation capabilities of this network, inspection of the

dependence between mappings computed by these networks and their parameters, and

inspection of the applicability of standard backpropagation algorithm for the training

EFNNs.

This thesis is not the first study which applies ef-operator to artificial neural net-

works. Previously, Akbaş et al. [5] introduced multiplication-free neural networks in

which they replaced standard vector multiplication with ef-operator. Multiplication-

free neural networks failed to match the state-of-the art classification accuracies in

their experiments. Their experiments showed that classification accuracy can drop as

much as 10% with these networks. Recently, we [4] proposed an improved version of

2



multiplication-free neural networks, called additive neural networks, with additional

parameters. Additive neural networks achieved near state-of-the art classification ac-

curacy on MNIST [52] data set. The drop on classification accuracy was less than 2%.

Also, we showed that these networks are capable of approximating any Lebesgue in-

tegrable function arbitrarily well.

‚ This thesis proposes a simpler version of additive neural networks with removal

of extra parameters introduced by additive neural networks. This proposed net-

work is called EF-operator based Neural Network, EFNN. EFNN achieves sim-

ilar representation capabilities through carefully designed hidden layer struc-

tures. EFNNs employ different type of hidden layers in different levels, un-

like the multiplication-free neural networks which uses same layer structure

for each hidden layers. Representation capabilities of EFNNs are inspected

for identity and ReLU activation functions which can be implemented with-

out any complex mathematical operations. Furthermore, dependence between

mappings computed by the EFNNs and their parameters for constant set of in-

put vectors and activation function inspected.

‚ The applicability of standard backpropagation for the training EFNNs ana-

lyzed. This analysis showed that standard backpropagation may fail to train

EFNNs due to non-differentiable nature of ef-operator. A simple modification

over standard backpropagation which introduces a line search step, proposed to

overcome training problems.

1.2 Outline of the Thesis

A brief summary of artificial neural networks (ANN) is provided in Chapter 2. This

summary starts with explaining what is an ANN and when they are used. Then,

different types of ANNs are surveyed with a focus on efficient variants. Moreover,

representation capabilities of ANNs and training methodologies for ANNs are dis-

cussed.

3



Ef-operator is introduced in Chapter 3. Basic mathematical properties of ef-operator

are explained. Similarities and differences between this new operator and classic

vector multiplication are discussed. An ANN model based on ef-operator, EFNN

also introduced in Chapter 3. Representational capabilities of this model is inspected.

Finally, dependence between parameters of EFNNs’ and the mappings computed by

EFNNs is inspected. This inspection constitutes a basis for the proposed training

algorithm at chapter 4.

A modified backpropagation algorithm with line search for the training EFNNs is in-

troduced in Chapter 4. A brief discussion of why standard backpropagation algorithm

is not enough to train EFNNs are given. This discussion is followed by the explana-

tion of the proposed algorithm. Next, the convergence of the proposed algorithm is

discussed. Finally, the quality of solutions founded by the new algorithm is discussed.

An experimental analysis of proposed algorithm at Chapter 4, is given in Chapter

5. Proposed algorithm experimentally is compared with standard backpropagation

algorithm. Both algorithm are used for training various data sets with various hyper-

parameters. Comparison of training performances, as well as classifier performances

between two algorithms depending on hyper-parameters is given.

A brief overview of what is done by this thesis is given in Chapter 6. Possible future

directions for this work is also included in this chapter.

4



CHAPTER 2

BRIEF OVERVIEW OF ARTIFICIAL NEURAL NETWORKS

Since this thesis about representing a new energy efficient neural network, we devote

this chapter to a brief analysis of Artificial Neural Networks (ANN). In the following

sections a brief history of ANNs and their application areas will be summarized.

Then, artificial neuron and various network architectures will be studied. Efficient

neural network variants in addition to state-of-the-art architectures will be explained

and downsides of efficient variants will be discussed. Chapter will continue with the

discussion of representation capabilities of neural networks. Finally, chapter will be

concluded with overview of gradient based training methods for ANNs.

2.1 A Brief History of Artificial Neural Networks

The history of artificial neurons can be traced back to the pioneering work of Mc-

Culloch and Pitts, in 1941 [57]. In this architecture the neurons are connected by

weighted and directed arcs, where each neuron outputs weighted sum of its inputs. A

threshold function is applied on these weighted sums to determine if a neuron fires

or not. Therefore, the output of each neuron is binary in this set-up. Weights of

these directed arcs between neurons are set by the researcher to implement a specific

functionality, unlike the modern neural networks. Hebb proposed first training algo-

rithm for artificial neural networks [36]. This algorithm was based on the assumption

that if two neurons fires simultaneously then the connection between these two neu-

rons should be stronger than that of not fire together. Frank Rosenblatt with the help

of several other scientists, including Block [10], Minsky and Papert [60] developed

5



the perceptron [72]. Perceptrons are connected by weighted and directed arcs, and

produce an output using their weighted inputs, similar to neurons suggested by Mc-

Culloch and Pitts [57]. Rosenblatt also suggested perceptron learning rule when he

suggested the perceptron. Perceptron rule adjusts weights between perceptrons itera-

tively to implement desired functionality. Although, perceptron rule is more powerful

than Hebb rule, it is applicable to single layer networks which caused a pause on the

development of ANNs until the emergence of backpropagation algorithm [29]. The

perceptron learning rule is failed to train multi-layered networks which A training

method for ANNs through propagation of error from output layer to hidden layers

is proposed by Werbos in 1974 [87], However, this algorithm did not receive much

attention until mid 80s when Parker [68] and LeCun [50] independently rediscovered

the algorithm. Although, ANNs received a renewed interest after backpropagation

algorithm, interest disappeared quickly after realization of ANNs do not scale well

to large problems; partly because of the hardware limitations [8]. ANNs received

attention after the appearance of deep belief networks, which uses an unsupervised

learning method to train weights in a greedy fashion to construct deep network with

initial weights coming from initial greedy training [38]. This new method allowed

training of deeper networks and made a breakthrough on ANN literature enabling

ANNs to achieve very high performance levels in some problems, such as OCR [12]

and face recognition [90]. Development of new hardwares allowed training of larger

networks than networks used on 80s and 90s, allowing more representational capac-

ity and increasing precision levels. Currently, ANNs running on GPUs in use for

greatly diverse set of problems with great success [8]. These problems include object

recognition [49, 81], speech recognition [59, 37], and language translation [45, 79].

2.2 Perceptron

A perceptron is a mathematical model which takes a real-valued input vector and

produce binary outputs of +1 and -1 according to linear combination of inputs being

greater than some threshold value or not. Formally, perceptron is a function p which

6



takes input vector x “ rx1, x2, . . . , xd0s and outputs

ppxq “

$

’

&

’

%

1 if wTx` b ą 0,

´1 otherwise,
(2.1)

where w “ rw1, w2, . . . , wd0s is weights of the perceptron determining individual

contribution of each input and b is bias of the perceptron determining a threshold

value for the activation of perceptron [61]. A graphical representation of perceptron

is given in Figure 2.1.

ř

w1

w2

wn

b

wTx` b

x1

x2

xn

1

ppxq

Figure 2.1: Visual representation of a perceptron which maps an input d0-dimensional

real input vector x to an output vector ppxq “ wTx` b.

ANNs based on perceptrons are created connecting the outputs of several perceptrons

to the input of other perceptrons.

2.3 Feed-forward Neural Networks

Feed-forward neural networks (FNN) are special kind of neural networks in which

neurons are partitioned into disjoint sets called layers. Layers are indexed from 1 to

l, and output of a neuron at layer i can be connected only to neurons at layer i` 1 as

input. Inputs are considered as layer 0. Each layer computes linear combinations of

outputs of previous layer’s and outputs these linear combinations after applying acti-

vation function. Formally, each layer is a function li which takes output of previous

7



layer li´1px;θq and outputs

lipx;θq “ f pWi
T li´1p`;bqrisq, (2.2)

where x is d0-dimensional input vector, f is the activation function, θ is the parame-

ters of network, Wi is weights of ith layer, bi is biases of ith layer, and l0px;θq is the

input vector [29].

2.4 Energy Efficient Neural Network Variants

Neural networks are powerful tools, however, to a certain extent their power comes

with a high computational cost. They require computationally costly numeric calcu-

lations such as multiplication, present in the linear transformation of perceptrons, and

complex mathematical functions, necessary for the calculation of activation functions.

There are various approaches to make ANNs efficient from different perspective. Two

of the most popular approaches are limiting weights to some special set so that com-

putation can be made more efficiently, and approximating multiplications and other

complex mathematical functions with computationally more efficient functions.

2.4.1 Neural Networks with Restricted Weights

One popular way of decreasing the computational cost of a ANN is to put some

restrictions on the weights. If the weights are limited to a special subset of floating-

points, then it is possible to compute them efficiently without using hardware imple-

mentation of general purpose multiplication instruction. These special subsets can be

powers of 2, low-precision floating-points or simple set of t´1, 0, 1u. One of the

first example of these kinds of networks is proposed by Marchesi et al. [56]. They

showed that restriction of weights to subset of integers which are power of two or

sums of power of twos can be used on feed-forward forward networks with binary

outputs. The computational and energy efficiency of such weights on multiplication,

which can be computed with addition and shifting shown by White and Elmasry [88],

and Lim and Liu [54].

8



Usage of low precision floating-point numbers as weights, originates from the error-

resilience of ANNs to small noise[34]. Both theoretically and experimentally usabil-

ity of low precision floating-points can be used on ANNs. Holi and Hwang [41] gave

a theoretical analysis of effects of low precision floating-point numbers on usage of

neural networks. Hammerstrom [35] used 16-bit fixed floating-point computation for

computing and later Höhfeld and Fahlman [40] used 8-bit floating-point computation.

Recent studies using low precision arithmetic include the study done by Vanhoucke et

al. [84] in which 8-bit approximations of high precision weights used on deployment,

study done by Chen et al. [15] in which 32-bit fixed point floating-point arithmetic

used, and study done by Gupta et al. [34] in which 16-bit fixed point floating-point

arithmetic used.

Binary weights are extreme case of low precision arithmetic, where weights are

limited to set t´1, 1u. Binary weighted ANNs based on the work of Hwang and

Sung [43], in which they showed restriction of weights to the set t´1, 0, 1u can be

used with minimal loss in the performance. The set t´1, 0, 1u requires 3-bit fixed

point floating-point arithmetic allowing these networks to achieve both energy and

memory efficiency. Their work is later applied on binary setting where weights can

be represented with single bit and any arithmetic operation can be carried with logical

instructions which are more energy efficient than usual arithmetic instructions [47].

Binary multi-layer neural networks are suggested by Cheng et al. [16] and followed

by bitwise neural networks [47], BinaryNet [18], binarized neural networks [20], Bin-

naryConnect [19], and XNOR-Net [70]. All of these works attained near state-of-the

art performances in some problems, while saving large amount of energy using log-

ical instructions instead of multiplication and memory using single bit to represent

weights.

2.4.2 Approximate Computations

Approximate calculation of complex mathematical functions is another method to

efficiently compute ANNs. Idea behind the usage of approximate computations is

resilience of neural networks to errors [17], similar to usage of low precision arith-

9



metic. Two popular approximation approaches are approximation of the activation

function and approximation of multiplication operation inside neurons. Studies using

both approaches summarized at below paragraph.

Sigmoidal activation functions such as sigmoid function and hyperbolic tangent func-

tion (tanh) requires computation of complex mathematical operations which are not

energy efficient. There are various approaches for approximating these functions

using piece-wise linear functions, polynomials and discrete cosine transformation

(DCT). Recent works include Torki et al. [82], Khodja et al. [46], Panicker and

Babu [67], Callejas-Molina et al. [14], Abdelsalam et al. [1, 2]. Torki et al. [82] pro-

posed a digital hardware implementation which computes sigmoidal activation func-

tion approximately with polynomials. Similar to Faiedh et al.[82], Khodja et al. [46],

proposed a field-programmable gate array (FPGA) implementation, which computes

sigmoid function approximately with polynomials. Panicker and Babu [67] proposed

a FPGA implementation which computes sigmoid function approximately with piece-

wise linear functions. Callejas-Molina et al. [14], proposed a digital hardware im-

plementation which computes tanh approximately with piece-wise linear functions.

Abdelsalam et al. [1, 2] proposed a FPGA implementation, which computes tanh

approximately with DCT interpolation.

Approximation of multiplication operations based on the fact that artificial neurons

resilient to noise and approximation of multiplication operation is just another source

of error. A neuron is called resilient to error if the small changes on the input of

the neuron causes small changes on the output of the ANN [85]. Venkataramani et

al. [85] proposed a method to determine neurons resilient to error based on gradients

computed during backpropagation. They approximate the multiplication operation

on these neurons through low precision multiplication and they also approximate ac-

tivation functions through piece linear functions. Zhang et al. [92] theoretically ana-

lyzed approximating error resilient neurons and proposed an iterative method based

on the ranking of neurons to determine neurons whose output does not affect the

performance of ANN significantly. They approximated multiplier circuits for en-

ergy efficiency. Du et al. [24] proposed an inexact computation of multiplication

10



through inexact logic units using inexact logic minimization approach proposed by

Lingamneni et al. [55]. Sarwar et al. [74] proposed approximation of multiplication

using alphabet set. Suggested multiplication method splits the weights into parts,

so that multiplication of corresponding parts can be computed using a look up table

and results can be combined using shift and addition operations. Mrazek el al. [62]

proposed approximation of multiplication on all neurons using the same approxima-

tion method. Their results show that large amount of power reduction can be gained

through approximating the multiplication operations with small loss on classification

accuracy.

2.5 Representation Capabilities of Artificial Neural Networks

A neural network can be considered as a mapping from an input space to an out-

put space. Although, there might be mappings between these spaces, which cannot

be represented by classical neural networks, Cybenko showed that depending on the

activation function, neural networks is capable of representing large variety of func-

tions.

An activation function σ is called sigmoidal, if

lim
xÑ8

σpxq “1,

lim
xÑ´8

σpxq “0.
(2.3)

The definition of sigmoidal functions does not impose strict restrictions on a function,

and consequently large variety of functions are classified as sigmoidal. Although,

some popular activation functions such as sigmoid and tanh are not sigmoidal by def-

inition, they can be converted to one with affine transformations. Cybenko proved

the following two theorems in his pioneering paper[21] about sigmoidal functions,

which shows the function approximation capabilities of neural networks when acti-

vation function is an affine transformation of a sigmoidal function.

11



Theorem 2.5.1. Let σc be a continuous sigmoidal function. Then, finite sums of the

form

Gσc “
!

n
ÿ

i“1

αiσpw
T
i x` biq|wi P R

d0 , αi, bi P R, n P Z
`
)

(2.4)

are dense in CpId0q where CpId0q is the metric space of continuous functions over

d0-dimensional unit cube with supremum norm.

Theorem 2.5.1 implies that, when there is no restriction on number of neurons, the

network can approximate any continuous function arbitrarily well, provided that the

activation function is an affine transformation of continuous sigmoidal function. This

theorem applies to activation functions such as sigmoid and tanh.

Theorem 2.5.2. Let σb be a bounded, measurable sigmoidal function. Then finite

sums of the form

Gσb “
!

n
ÿ

i“1

αiσpw
T
i x` biq|wi P R

d0 , αi, bi P R, n P Z
`
)

(2.5)

are dense in L1pId0q where L1pId0q is the metric space of Lebesgue integrable func-

tions over d0-dimensional unit cube with L1 norm.

Theorem 2.5.2 is slightly weaker form of 2.5.1, which states that, when there is no

restriction on number of neurons, network can approximate any bounded, measurable

function arbitrarily well, provided that the activation function is an affine transforma-

tion of bounded, measurable sigmoidal function. This theorem applies to any contin-

uous sigmoidal function, as well as some non-continuous functions such as sign.

2.6 Training Methods for Artificial Neural Networks

Training an ANN means finding a “desirable” set of parameters, so that the error

between desired outputs and actual outputs of network with respect to an objective

function, L, is minimized. Until 1980s, multiple algorithms suggested for training

ANNs [36, 72, 89]. However, none of them scaled to networks with more than two

12



layers until the appearance of backpropagation algorithm [29]. Currently, backprop-

agation algorithm with gradient descent optimization techniques are one of the most

popular training method for ANNs [73].

2.6.1 Back Propagation

Backpropagation algorithm is a training method for ANNs. It was designed to be

used on supervised learning problems, where desired outputs are available, which is

the label of each input in case of classification problem. Backpropagation algorithm

mainly consists of four stages, (i) computing outputs of network, (ii) computing error

between desired outputs and the outputs computed by the network with respect to

objective function, (iii) computing update values minimizing error, and (iv) updating

parameters with previously computed update values [29].

Formally, let X be set of input vectors and Y their corresponding desired output

vectors, L be objective function which will be minimized through training, M be

any optimization algorithm which returns update values for parameters given error,

opx; θq be the output of ANN with parameters θ and θ0 be initial set of parameters.

Backpropagation method is proved in algorithm 2.1 using these notations.

Algorithm 2.1 Backpropagation algorithm
procedure BACKPROP(X , Y , u0)

tÐ 0

while not converged do

tÐ t` 1

Compute outputs with forward pass, Ot Ð opX ; ut´1q

Compute error between desired output and actual output, Lt Ð LpOt,Yq
Compute update values, ∆ut´1 Ð M pL, ut´1q

Update parameters, Ut Ð ut´1 `∆ut´1

end while

return ut

end procedure

13



2.6.2 Gradient Descent Optimization Methods

In order to update the objective functions L at each iteration a popular method, called

gradient descent, is used. These methods can be easily generalized to multi-layer

architectures from single layer using chain rule [58]. Gradient descent method itera-

tively minimizes the objective function L with respect to its parameters θ by updating

parameters in the opposite direction of the gradient of objective function ∇θLpθq,

where the change is maximal. Magnitude of each update determined by a hyper-

parameter called learning rate [73].

There are many variants of gradient descent method on use. These include variants

of plain steepest descend method, which differ by how much input data used to com-

pute update values. Stochastic gradient descent method (SGD) is one of the popular

variants of plain steepest descent method. There are also more sophisticated variants

of gradient descent method, which decide update direction using not only the cur-

rent gradient, but using previous update values as well. Adaptive moment estimation

(ADAM) is one of these more sophisticated variants which is commonly used in prac-

tice. Stochastic gradient descent (SGD) and adaptive moment estimation (ADAM)

methods will be explained in this section.

2.6.2.1 Stochastic Gradient Descent

Gradient descent method employs equation (2.6) as update rule.

θt`1 “ θt ´ µ∇θtLpθq, (2.6)

where θt is the current parameters, L is the objective function to minimize, µ is learn-

ing rate and θt`1 is the updated parameters. Computation of L from inputs and desired

outputs will be discussed momentarily. This update rule moves at the direction, where

change on L is maximal [76]. Although, there are algorithms with better convergence

rates, this algorithm still receives interest due to its simplicity.

There are variations of gradient descent algorithm depending on how much of input

14



data is used on computation of L in a single update. Stochastic gradient descent ver-

sion computes L using a single input vector at each update, in other words at each

update stochastic gradient descent optimizes L with respect to the error between net-

work’s output on single sample and desired output of that sample. On the other hand,

batch gradient descent method computes L with respect to error between network’s

output on all samples and desired output of those samples. There is also mini-batch

gradient descent method which computes L using a small subset of training samples

at each update. Both stochastic gradient descent and batch gradient descent are spe-

cial cases of mini-batch gradient descent algorithm with batch sizes 1 and N , where

N is number of training samples. Usually, the term SGD is used when mini-batch

gradient descent method used on the literature [73].

2.6.2.2 Adaptive Moment Estimation

Stochastic gradient descent method relies solely on the current gradient and uses fixed

learning rate. However, several studies showed that using past gradients in conjunc-

tion with current gradient can improve convergence rate [80, 69]. There are also

methods, which changes learning rate to accelerate learning such as AdaGrad [25],

AdaDelta [91]. Both of these methods increase the stability of gradient descent and

improve the convergence rate. Adaptive moment estimation (ADAM) is a popular

optimization method which uses both past gradients to compute update direction and

dynamically adjusts the learning rate. ADAM method relies on both exponentially de-

caying average past gradients, mt, and exponentially decaying average past squared

gradients, vt. These terms calculated according to equations (2.7) and (2.8), as fol-

lows;

mt “β1mt´1 ` p1´ β1qgt, (2.7)

vt “β2gt´1 ` p1´ β2qg
2
t , (2.8)

where β1 and β2 are exponential decay rates, and gt is

∇θtLpθtq, (2.9)

15



which is gradient of objective function with respect to current parameters. mt and vt

are initialized with 0 vectors. Afterwards, ADAM method computes bias-corrected

estimates from these values using equations (2.10) and (2.11).

m̂t “
mt

1´ βt1
, (2.10)

v̂t “
vt

1´ βt2
. (2.11)

(2.12)

Update rule for ADAM method can be formulated using bias-corrected values as in

equation (2.13).

θt`1 “ θt ´
µ

?
v̂t ` ε

m̂t, (2.13)

where µ is learning rate, ε is a scalar, θt is current parameters and θt`1 is updated

parameters. The authors of ADAM method suggested 0.9 for β1 as default value,

0.999 as default value for β2 and 10´8 as default value for ε. They also showed

experimentally that ADAM method works well in practice and produce comparable

results with other adaptive learning algorithms [48, 73].

2.6.3 Initialization of Neural Networks and Training

There are various parameters, which needs to be selected before training an ANN and

there also various parameters which needs to be selected to employ an optimization

method. Important issues regarding the design on an ANN architecture are the acti-

vation function, defining number of hidden layers and the number of neurons at each

layer. Also, selection of initial parameters is an important problem.

There are well-known algorithms which are guaranteed to successfully train ANNs

with single hidden layer [66]. However, training an ANN with at least two hidden

layers through backpropagation algorithm is NP-complete problem regardless of se-

lected optimization method [11]. Unfortunately, most of the above problems do not

16



have formal solutions, instead there are some heuristics, which work in a wide range

of practical problems.

2.6.3.1 Selection of Topology

The number of neurons used at hidden layers, as well as how they are distributed

into hidden layers directly affects the representation capacity of an ANN. There are

theorems, such as universal approximation theorem suggesting ANNs can approxi-

mate the desired function arbitrarily well, given a sufficient number of neurons used

in hidden layers and appropriate activation function used. However, increasing the

number of neurons in a layer increases both complexity of computing layer’s out-

put and training process of the ANN [58]. There are various studies showing that

the same approximation capabilities can be achieved using deeper networks instead

of shallow but large networks [44, 26]. Current trend is toward ANNs with several

layers each of which containing small number of neurons. These architectures allow

networks to have sufficient capacity to represent most function with relatively small

number of parameters. Usually, one employs several topologies to solve a problem

and selects the “best” performing topology among these topologies, empirically.

2.6.3.2 Selection of Activation Function

The activation function directly affects the representation capacity of ANNs similar to

choice of network topology. For example, if a linear activation function is used, then

ANNs can only represent linear functions. Although, choice of activation function

restricts the representation capacity of ANNs, large class of activation functions can

be effectively used on practice. One such class is the continuous sigmoidal functions,

as shown by universal approximation theorem [21]. Activation function also affects

the training procedure. If a non-differentiable function is used as the activation func-

tion, then the optimization method which requires the gradients can only be applied

by an approximation of gradient. Otherwise, they cannot be used on training these

ANNs. Similar to selection of topology, one employs several activation functions and

17



selects the one performing “best” among these functions, empirically. However, one

important point on selection of activation functions is, the properties of the activation

function such as continuity, differentiability, are shared with the functions computed

by neural networks at the end.

2.6.3.3 Selection of Initial Parameters

ANNs usually initialized with randomly chosen small initial parameter, typically from

normal distribution. There are some theoretical inspection on initialization of param-

eters according to the activation function instead of sampling from a random distri-

bution. Glorot et al. [33] suggests that weights, W, of a layer can be initialized with

random numbers sampled from the following normal distribution;

N
´

0,
2

nin ` nout

¯

, (2.14)

where nin number of neurons in the previous layer, nout number of neurons in the

current layer, and N represents the normal distribution.

2.6.3.4 Selection of Objective Functions

The selection of objective function depends on the type of the problem. Some prob-

lems require exact outputs, such as function approximation problems and prediction

problems, while other problems can use inexact outputs as long as order of outputs

are preserved, such as probability estimation for individual classes for classification

problem. Two popular objective functions are mean square error (MSE) and cross-

entropy loss. Mean square error is defined between two set of vectors as follows,

1

N

N
ÿ

i“1

‖oi ´ yi‖2 , (2.15)

where oi is actual output vectors and yi is desired output vectors for i “ 1, 2, . . . , N .

Cross-entropy loss is defined between two set of vectors as follows,

1

N

N
ÿ

i“1

C
ÿ

j“1

yi, j logpoi, jq, (2.16)

18



where oi and yi are C-dimensional vectors for each i [65]. Both vectors assumed

to be a probability distribution or equivalently each entry on vectors should be non-

negative and sum of entries should be 1. An arbitrary vector can be converted into a

probability distribution using softmax function. Outputs of softmax function can be

calculated as follows,

exppoiq
C
ř

j“1

exppojq

(2.17)

for ith entry of o.

2.7 Summary

This chapter presents a brief overview of ANNs. A brief history of ANNs presented at

Section 2.1 with focus on development of artificial neurons and training methodolo-

gies. Artificial neurons and feed-forward neural networks are discussed at the same

section. Then, Section 2.4 summarizes the energy efficient techniques used on neural

networks. The representational power of neural networks and universal approxima-

tion theorem for feed-forward neural networks with sigmoidal activation functions,

is discussed in Section 2.5. Finally, training methodologies for ANNs with focus on

back propagation algorithm and optimization methods for weight updates specifically

SGD and ADAM, is summarized in Section 2.6.

19



20



CHAPTER 3

EF-OPERATOR AND NOVEL NEURAL NETWORK ARCHITECTURE

BASED ON EF-OPERATOR

The major motivation of this thesis is to develop an efficient neural network, which

can be used by the limited-resource computing environments. We approach this

problem by designing a new type of neuron based on an additive operator, called

ef-operator, suggested by Çetin et al. [83]. This chapter studies the ef-operator, a

binary vector operator which can be computed without multiplication. It is initially

designed to be used on machine learning algorithms at the computing environments

with limited energy, such as mobile devices, instead of vector product to save energy.

Focus of this chapter is how ef-operator can be used on neural networks and how

they behave with respect to the parameters of neural networks. We will start with

the definition of ef-operator. Then, we analyze its properties including brief com-

parison with vector product. Next, a feed-forward neural network architecture based

on ef-operator is introduced. Afterwards, we study the representation capabilities of

ef-operator based feed-forward neural network architecture. Finally, we analyze this

feed-forward neural network architecture. The analysis is conducted with respect to

the network parameters and how these parameters are affected by the introduction of

ef-neurons.

3.1 EF-operator

EF-operator is designed to be computable without any multiplication operation. It

is first introduced in 2009 [83] to gain energy efficiency in image processing algo-

21



rithms. Afterwards, it is used on several other image processing tasks, such as object

tracking for infrared videos [22], classification of biomedical images [78] for energy

efficiency. It is also used in signal processing tasks to approximate cosine similarity

in an energy efficient way [6]. Recently, we applied ef-operator to artificial neural

network methods for possible improvements of energy efficiency in artificial neural

networks [5], [4].

Definition 3.1.1. Ef-operator, ˛, between two vectors is defined as follow,

x ˛ y :“
d
ÿ

i“1

signpxiyiqp|xi| ` |yi|q, (3.1)

where x and y are two d-dimensional real vectors.

Ef-operator can be written in terms of regular vector multiplications. Although, us-

ing regular vector multiplication to represent ef-operator contradict with the main

motivation behind the proposition of this operator, usage of well-understood regular

vector multiplication makes manipulation of ef-operator easier, for the development

of artificial neural network algorithms.

Proposition 3.1.2. Ef-operator can be computed using vector multiplication as fol-

lows,

x ˛ y “ signpxqTy ` xT signpyq, (3.2)

where x and y are two d-dimensional real vectors, and sign is element-wise sign

function.

Proof. The equation (3.2) is a natural outcome of two well-known properties of sign

function. Let x and y be two real numbers, then,

1. sign function is multiplicative, i.e

signpxyq “ signpxqsignpyq. (3.3)

2. A real number can be written in terms of its sign and its magnitude, i.e

x “ signpxq|x|. (3.4)

22



Individual sums on the equation (3.1),

signpxiyiqp|xi| ` |yi|q (3.5)

becomes

signpxiqsignpyiq|xi| ` signpxiqsignpyiq|yi|, (3.6)

by equation (3.3), which is equivalent to

signpyiqxi ` signpxiqyi, (3.7)

by equation (3.4), for all i “ 1, 2, . . . , d. Hence equation (3.1) becomes,

x ˛ y “
d
ÿ

i“1

signpxiqyi ` xisignpyiq, (3.8)

which is equivalent to

x ˛ y “ signpxqTy ` xT signpyq, (3.9)

as proposed.

One important consequence of Proposition 3.1.2 is that, ef operator can be easily

generalized to matrix-vector form, as follows.

Definition 3.1.3. Ef-operator, ˛, between a matrix and a vector defined as follow,

X ˛ y :“ signpXqTy `XT signpyq, (3.10)

where X is a d1 ˆ d-dimensional real matrix and y is a d-dimensional real vector.

In order to gain some visual insight on ef-operator, we plot the ef-operator applied on

two scalars in figure 3.1.

3.1.1 Partial Derivatives of EF-operator

Most of the training methods for ANNs uses partial derivatives of some cost func-

tion with respect to their parameters. In order to employ ef-operator to define a new

23



Figure 3.1: Behavior of EF-operator between two 1-D vectors in the interval [-10, 10]

as 3-D graph.

ANNs, the partial derivatives are necessary to train these ANNs using well-known

algorithms for standard ANNs. One crucial problem about ef-operator is that it is not

continuous due to sign function and consequently does not have proper partial deriva-

tives. However, partial derivatives of ef-operator are undefined only at 0 and this is a

removable discontinuity. Hence, it can be approximated during numeric calculations

using the approach below.

Partial derivatives of ef-operator can be defined as follows;

d

dxi
x ˛ y “

d

dxi
psignpxqTy ` xT signpyqq

“
d

dxi
psignpxiqyiq ` signpyiq

«signpyiq,

(3.11)

24



for all i “ 1, 2, . . . , d as

lim
xÑ0`

d

dx
signpxq “ 0 “ lim

xÑ0´

d

dx
signpxq. (3.12)

Similarly,
d

dyi
px ˛ yq « signpxiq (3.13)

for all i “ 1, 2, . . . , d.

3.1.2 Multiplication-free Implementation of EF-operator

One of the main idea behind the ef-operator is to compute a transformation without

using multiplications. Proposition 3.1.2 gives us a way to compute it effectively with

existing matrix multiplications. On the other hand, original definition 3.1.1 can be im-

plemented without multiplication. Pseudo-code for this naive implementation which

does not make any assumption on the representation of numbers, is given in Algo-

rithm 3.1. A more efficient version for single precision floating numbers represented

with IEEE 754 floating-point standard given in Algorithm 3.2

Implementation of ef-operator without multiplication requires more instruction com-

pared to hardware which supplies floating-point multiplication instruction due to

calculation of conditionals and extra addition instruction. However, avoidance of

floating-point multiplication might improve energy consumption, since floating-point

multiplication consumes relatively more energy than floating-point addition in most

processors [28], [9]. The improvement in energy consumption is useful especially in

mobile computing environments, where energy is a limited resource. The improve-

ment in energy consumption depends on the hardware, as the difference between

energy consumption of floating-point addition instruction and floating-point multipli-

cation instruction varies between different hardwares [9]. If the difference between

energy consumptions of these two instructions is large enough to compensate the ad-

ditional instructions, then usage of ef-operator improves the energy consumption.

25



Algorithm 3.1 Naive multiplication-free computation of ef-operator between two d-

dimensional vectors
1: procedure EF(x, y, d)

2: outÐ 0

3: for i “ 1, 2, . . . , d do

4: if xi “ 0 or yi “ 0 then

5: continue;

6: end if

7: if xi ą 0 then

8: outÐ out` yi

9: else

10: outÐ out´ yi

11: end if

12: if yi ą 0 then

13: outÐ out` xi

14: else

15: outÐ out´ xi

16: end if

17: end for

18: return out

19: end procedure

Theoretically, expected energy consumption of Algorithm 3.2 based implementation

and theoretical expected energy consumption of classic vector multiplication can be

computed as follows: We assume that the expected energy consumptions of floating-

point multiplication is Pfm, floating-point addition is Pfa, binary and is Pba, binary

or is Pbo, binary xor is Pbx and branching is Pb, the energy consumption of lines 4-6

in Algorithm 3.2 is Pc. We, also assume that probability of an entry being non-zero

in the x vector is px and probability of an entry being non-zero in the y is py. We

exclude the extra power consumption caused by the for loop as it is shared by both

implementation. The expected power consumption of classic vector multiplication is

dpPfm ` Pfaq, (3.14)

26



Algorithm 3.2 Multiplication-free computation of ef-operator between two d-

dimensional vectors for single precision floating-point numbers
1: procedure EF(x, y, d)

2: outÐ 0

3: for i “ 1, 2, . . . , d do

4: if xi “ 0 or yi “ 0 then

5: continue;

6: end if

7: sÐ pxi&0x80000000q ‘ pyi&0x80000000q

8: outÐ out` s|ppxi&0x7fffffffq ` pyi&0x7fffffffqq

9: end for

10: return out

11: end procedure

as dmany floating-point multiplications required between d entries and dmany floating-

point additions are required to combine these multiplications. The expected power

consumption of ef-operator is

dpPc ` pxpypPbx ` 4Pba ` Pbo ` 2Pfaqq, (3.15)

as lines 7 and 8 executed only if both xi and yi are non-zero which happens with prob-

ability pxpy. Hence, ef-operator improves energy consumption for hardwares where

equation (3.15) is less than (3.14). More efficient implementations of ef-operator can

be suggested to save energy. Usually, one of the vectors is a weight vector. Con-

sequently, usage of sparse weights can improve energy consumption of ef-operator

further.

3.1.3 Properties of EF-operator

In order to gain insights about the power and weaknesses of ef-operator, one needs to

study various properties, such as commutativity and distributivity. It is also worth to

compare ef-operator with regular vector multiplication and inner product operators.

These comparisons will enable us to replace regular vector multiplication and inner

27



products by ef-operators, when we define a neuron. Let us start by remarking that

while vector multiplication is an inner product [39], the ef-operator fails to satisfy

the inner product properties. In other words, ef-operator does not satisfy the first two

requirements of the inner product which are,

px` yq ˛ z “x ˛ z` y ˛ z, (3.16)

pcxq ˛ y “cpx ˛ yq, (3.17)

for any x, y, z P Rd and for any c P R. Let us, consider the simple case d “ 1.

Equation (3.16) implies that

signpx` yqz “ signpxqz` signpyqz, (3.18)

which can hold if either z “ 0 or x “ ´y is satisfied. Similarly, equation (3.17)

implies that

csignpxqy “ signpcxqy, (3.19)

which can hold if either c “ 0 or |c| “ 1 is satisfied. However, ef operator satisfies

similar identity,

pcxq ˛ pcyq “ cpx ˛ yq. (3.20)

On the other hand, last two requirements are satisfied,

x ˛ y “y ˛ x, (3.21)

x ˛ x ą0 if x ‰ 0, (3.22)

where . is complex conjugate. Equation (3.21) is equivalent to ef operator being

commutative as both x and y are real vectors and equation (3.22) is equivalent to

x ˛ x “ 2 ‖x‖1 ą 0 if x ‰ 0. (3.23)

3.2 EF Neuron and EF Neural Networks

This thesis proposes a feed-forward neural network based on ef-operator, called ef-

operator based neural network (EFNN). Proposed architecture is similar to previously

28



suggested versions in [5] and [4]. Network suggested on [5] simply replaces matrix-

vector multiplication at each layer of classic feed-forward neural network with ef-

operator. Hence, each hidden layer computes the equation (3.24),

f pW ˛ h` bq, (3.24)

instead of the equation (3.25) which is computed by standard feed forward neural

networks,

f pWTh` bq, (3.25)

where W is weights of the layer, b is the bias of the layer, f represents the activation

function and h is the output of previous layer if the hidden layer is not the first one,

otherwise h is just the input vector. In this study, the function classes which are

representable by the networks is not investigated.

Artificial neural networks suggested in [4], called additive neural networks, employ

the same structure for each hidden layer like the network suggested on [5]. These

network introduce a new parameter for each hidden layer and replace the output layer

with a linear layer. Hidden layers of these networks compute equation (3.26) as fol-

lows;

f pad pW ˛ hq ` bq, (3.26)

where a is a scaling coefficient andd is element-wise multiplication. These networks

can approximate any Lebesgue integrable function arbitrarily well, given enough neu-

rons if specific activation functions are used. [4] shows this property in case of identity

and rectified linear unit (ReLU).

EFNN is a simplified version of the additive neural networks which was improvement

over [5] with provable representation capabilities. This new artificial neural network

architecture eliminates the necessity of matrix multiplications at all layers except for

the first hidden layer and the output layer. Consequently, number of multiplication

operation required to compute EFNNs does not depend on the number of hidden

layers while number of multiplication operation required to compute additive neural

networks depends on the number of hidden layers. Furthermore, EFNNs preserves

representation capacities of additive neural networks. Loosely speaking, EFNNs em-

29



ploy linear layer as the first hidden layer and output layer, and other hidden layers

computes equation (3.24).

Definition 3.2.1. An l-layered EFNN with layer sizes d0, d1, . . . , dl is an ANN whose

layers computes hi which will be recursively defined at the equation 3.27.

hipx, u, f q :“

$

’

’

’

’

&

’

’

’

’

%

f pWT
u, ix` bu, iq if i “ 1,

f pWu, i ˛ hi´1px, u, f q ` bu, iq if i ă l,

WT
u, ihi´1px, u, f q ` bu, i if i “ l,

(3.27)

where x P Rd0 is the input vector, f represents the activation function and u is the

parameters defined as

u :“ pWu, 1, bu, 1, . . . , Wu, l, bu, lq P R, (3.28)

where R is parameter space defined as

l
ą

i“1

´

Rdi´1
Ś

di ˆRdi
¯

, (3.29)

where
Ś

is cartesian-product.

A visual representation of this architecture can be seen at figure 3.2.

The main idea behind ef-operator is to avoid multiplications as much as possible. Us-

age of any activation function requiring complex mathematical functions defeats this

purpose. Consequently, focus will be on activation functions which does not require

multiplication or any other complex mathematical functions throughout this thesis.

Specifically, rectified linear unit, ReLU, and identity function, I , will be considered

most of the time.

What does an EFNN represent is a crucial question which needs to be answered. We

will discuss the properties of EFNN formally in the next section. In this section, we

suffice to provide, Figure 3.3 a visualization of the functions computable with EFNNs

over 2-dimensional input vectors. In order to display figures with uniform coloring,

output of each network is scaled to r´1, 1s range with a simple linear transformation.

30



. . .

. . .

. . .

...
...

...
...

...

. . .

. . .

Input layer

Hidden layer 1

Hidden layer 2

...

Hidden layer l-1

Output layer

Layer Labels

o0 “ x

o1 “ f pWT
u, 1 o0 ` bu, 1q

o2 “ f pWu, 2 ˛ o1 ` bu, 2q

...

ol´1 “ f pWu, l´1 ˛ ol´2 ` bu, l´1q

ol “WT
u, l ol´1 ` bu, l

Neuron outputsArchitecture

Figure 3.2: Visual representation ef-operator based neural networks (EFNN). Note

that, input and output layers perform standard vector multiplication, whereas hidden

layers perform ef-operator.

These networks are randomly generated and they are not trained for approximating

any functions. Although, one can produce much more complex outputs with training,

these networks are selected to visualize sample functions which are computable by

EFNNs. A simple observation from these graphs is that when the number of neurons

in hidden layers is increased, the mappings become increasingly non-linear even if

very simple identity function is used as the activation function. However, this inherent

non-linearity of ef-operator comes with a price. Any non-linear function computed

by EFNNs are non-differentiable. Non-differentiable nature of computing functions

may restrict the usage areas of EFNNs when contiunity or differentiability is required.

3.3 Representation Capabilities of EF Neural Networks

In this section, we analyze the representation capabilities of EFNNs with respect to

the activation function, which is restricted to identity and ReLU. This section starts

with necessary definitions required for the analysis. Then, we prove the major theo-

rem of this thesis which show that EFNNs are capable of computing functions which

are dense in Lebesgue integrable function space, when activation function is identity.

31



Figure 3.3: 2-D mappings computed by randomly generated EFNNs using activation

functions identity and ReLU with different network topologies. Topologies given in

left column shows the number of neurons used on each layer, including input neurons.

32



Theorem 3.3.1. EFNNs can approximate any bounded measurable function arbitrar-

ily well, given enough neurons if activation function is either identity or ReLU.

Lastly, we investigate the representation power of EFNNs when activation function

is ReLU. This theorem will be proven with the help of the propositions, given below.

Identity and ReLU activation functions will be handled separately.

Definition 3.3.2. Consider an EFNN mapping d0-dimensional input vectors to 1-

dimensional values. Let GI be the set of functions computed by this EFNN with iden-

tity activation function and GR be the set of functions computed by this EFNN with

ReLU activation function.

Proposition 3.3.3. GI is dense in L1pId0q, metric space of Lebesgue integrable func-

tions with L1 norm over d0-dimensional unit cube.

This proposition will be proved using Theorem 2.5.2 which shows that Gσ is dense

in L1ppqId0q for any bounded, measurable sigmoidal function, σ. Firstly, a set of

functions satsifying Theorem 2.5.2 will be defined. Afterwards, it will be shown that

this set is a subset of GI .

Let σ1 be a function of the following form,

σ1pxq “
signpxq ` 1

2
, (3.30)

and Gσ1 be the set of functions of the following form,

Gσ1 “
!

n
ÿ

i“1

αiσ
1
pwT

i x` biq|wi P R
d0 , αi, bi P R, n P Z

`
)

. (3.31)

Lemma 3.3.4. Gσ1 , given in equation (3.31), is dense in L1pId0q.

Proof. If σ1 is a sigmoidal function, then by Theorem 2.5.2 Gσ1 is dense in L1pId0q.

σ1pxq “
signpxq ` 1

2
“
´1` 1

2
“ 0@x ă 0, (3.32)

and

σ1pxq “
signpxq ` 1

2
“
`1` 1

2
“ 1@x ą 0. (3.33)

33



Equations (3.32) and (3.33) implies that

lim
xÑ8

σ1pxq “1,

lim
xÑ´8

σ1pxq “0.
(3.34)

Equation (3.34) implies that σ1 is a sigmoidal function and consequently Gσ1 is dense

in L1pId0q.

Proof of Proposition 3.3.3. If Gσ1 is subset of GI , then GI is dense in L1pId0q as one of

its subset is dense in L1pId0q by claim 3.3.4. Hence, this proof will focus on showing

that Gσ1 is a subset of GI .

An arbitrary member of Gσ1 is of the form,

gpxq “
n
ÿ

i“1

αiσ
1
pwT

i x` biq “ b`
n
ÿ

i“1

α1isignpw
T
i x` biq, (3.35)

where x is d0-dimensional vector. Gσ1 is a subset of GI if gpxq P GI or equivalently,

there exists an EFNN with identity activation function such that its output is gpxq.

Constructing such a network and verifying its output is gpxq is enough to show that

Gσ1 Ă GI .

Although EFNNs can be constructed in multiple hidden layers without any restric-

tions on the number of hidden layers besides the burden of computational complex-

ity, constructing an EFNN with 4 layers suffice to prove our proposition. One such

network, N, consists of 4 layers each having n, 2n, n 1 many neurons, respectively.

Let u be the parameters of N, then u can be computed from g as follows,

34



Wu, 1 “

”

W1 W2 . . . Wn
ı

d0ˆn
, (3.36)

bu, 1 “

”

b1 b2 . . . bn
ı

nˆ1
, (3.37)

Wu, 2 “

”

e1 e2 . . . en 2e1 2e2 . . . 2en

ı

nˆ2n
, (3.38)

bu, 2 “02nˆ1, (3.39)

Wu, 3 “

”

en`1 ´ e1 en`2 ´ e2 . . . e2n ´ en

ı

2nˆn
, (3.40)

bu, 3 “0nˆ1, (3.41)

Wu, 4 “

”

α11 α12 . . . α1n

ıT

nˆ1
, (3.42)

bu, 4 “

”

b
ı

1ˆ1
, (3.43)

where ei is the ith standard basis element for each i.

This construction is based on a crucial observation, that is the sign function can be

computed using combination of neurons with EF-operators. In fact, only three neu-

rons in two layers are enough to compute sign function, where one of them combines

the output of the other two. This structure can be seen in figure 3.4 which will be

called sign computing unit (SCU).

x

n1pxq

n2pxq

W11 “
”

1 2
ı

1ˆ2
, b11 “

”

0 0
ıT

1ˆ2

W21 “
”

´1 1
ıT

1ˆ2
, b21 “

”

0
ı

1ˆ1

Figure 3.4: Visual representation of a sign computing unit.

Let the weight of the first layer of sign computing unit be W11, the bias of the first

layer of SCU be b11 and the output of the first layer of SCU be n1pxq. Let the weight

of the second layer of SCU be W21, the bias of the second layer of SCU be b21 and

the output of the second layer of SCU be n1pxq. If these weights and biases selected

according to equation (3.44),

W1
1 “

”

1 2
ı

1ˆ2
, b11 “

”

0 0
ıT

1ˆ2
,

W1
2 “

”

´1 1
ıT

1ˆ2
, b12 “

”

0
ı

1ˆ1
,

(3.44)

35



then outputs of these neurons becomes,

n1pxq “W
1
1 ˛

”

x
ı

` b11

“

»

–

signpxq ` x

2signpxq ` x

fi

fl ,
(3.45)

n2pxq “W
1
2 ˛ n1pxq ` b12

“´ signpx` signpxqq ` signpx` 2signpxqq

´ px` signpxqq ` px` 2signpxqq

“ ´ signpxq ` signpxq ` signpxq

“signpxq,

(3.46)

usign the fact that

signpxq “ signpsignpxqq, (3.47)

and consequently

signpxq “ signpx` signpxqq “ signpx` 2signpxqq. (3.48)

The first layer of N computes

h1px, u, I q “

»

—

—

—

—

—

–

wT
1 x` b1

wT
2 x` b2

...

wT
nx` bn

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.49)

The second and third layer contains n SCU in parallel. These SCUs are composed

of ith neuron of the third layer with the ith and pn` iqth neurons of the second layer

constructs for each i “ 1, 2, . . . n. The SCU whose output is ith neuron of the third

layer, takes the output of ith neuron of the first layer as input. Therefore, the third

layer of N computes

h3px, u, I q “

»

—

—

—

—

—

–

signpW1Tx` b1q

signpW2Tx` b2q
...

signpWnTx` bnq

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.50)

36



The fourth layer of N computes

h4px, u, I q “ b`
n
ÿ

i“1

α1isignpWiTx` biq, (3.51)

which is exactly gpxq. Hence Gσ1 is a subset of GI and consequently GI is dense

L1pId0q.

Remark. The proof of Proposition 3.3.3 is based on the construction of 4 layered

EFNNs. Deeper networks can also be used instead of the 4 layer network. If number

of layers is even, then extension can be done using sign computing units. If number

of layers is odd, then we need an additional observation. This observation is for

sufficiently small ε ą 0, pεI ˛ x is an approximation of x as,

pεIq ˛ x “

»

—

—

—

—

—

–

x1 ` signpx1qε

x2 ` signpx2qε
...

xd ` signpxdqε

fi

ffi

ffi

ffi

ffi

ffi

fl

dˆ1

u x, (3.52)

, where I is identity matrix. Hence, networks whose number of layers are odd, can

be constructed using networks having even number of layers and approximation of

signpxq usign above observation. However, this construction is not applicable to 3

layered EFNNs and we do not know their representation capacities. A final remak is

that the proof uses explicit construction, which may lead readers to think that training

is not necessary for EFNNs using this explicit construction. However, the construc-

tion relies on parameters of already trained standard ANN and consequently cannot

be constructed without training.

Proposition 3.3.5. GI is a subset of GR.

Lemma 3.3.6. If

X “

»

–

A B

C D

fi

fl , (3.53)

and

y “

»

–

e

f

fi

fl , (3.54)

37



then

X ˛ y “

»

–

A ˛ e`C ˛ f

B ˛ e`D ˛ f

fi

fl (3.55)

where A, B, C, D are matrices of size aˆ c, aˆ d, bˆ d, bˆ d, respectively and e

and v are vectors of size c and d, respectively.

Proof. Recall that,

X ˛ y “ signpXqTy `XT signpyq (3.56)

by equation (3.10). This equation is equivalent to

X ˛ y “

»

–

signpAqTe` signpCqT f `AT signpeq `CT signpfq

signpBqTe` signpDqT f `BT signpeq `DT signpfq

fi

fl (3.57)

by equations (3.53) and (3.54). Finally, equation (3.57) becomes

X ˛ y “

»

–

A ˛ e`C ˛ f

B ˛ e`D ˛ f

fi

fl (3.58)

by the following equivalences;

A ˛ e “signpAqTe`AT signpeq, (3.59)

B ˛ e “signpBqTe`BT signpeq, (3.60)

C ˛ f “signpCqT f `CT signpfq, (3.61)

D ˛ f “signpDqT f `DT signpfq. (3.62)

Lemma 3.3.7. The ef-operator between two vectors can be defined in therms of ef-

operator between the vector and ReLU function of the other vector;

x ˛ y “ x ˛ ReLUpyq ` p´xq ˛ ReLUp´yq (3.63)

for any x, y P Rd.

Proof. The ef-operator can be written in the following form,

x ˛ y “
d
ÿ

i“1

xi ˛ yi. (3.64)

38



This lemma can be proved by showing that

xi ˛ yi “ xi ˛ ReLUpyiq ` p´xiq ˛ ReLUp´yiq, (3.65)

for each i “ 1, 2, . . . , n, using the equation (3.64) with the help of following two

observations,

Observation 1:
xi ˛ 0 “signpxiq0` xisignp0q

“0.
(3.66)

Observation 2:

p´xiq ˛ p´yiq “signp´xiqp´yiq ` p´xiqsignp´yiq

“signpxiqyi ` xisignp´yiq

“xi ˛ yi.

(3.67)

If yi ď 0, then the equation (3.65) becomes

xi ˛ 0` p´xiq ˛ p´yiq “ xi ˛ yi. (3.68)

Otherwise, the equation (3.65) becomes

xi ˛ yi ` p´xiq ˛ 0 “ xi ˛ yi. (3.69)

Hence, equation (3.63) holds.

Proof of Proposition 3.3.5. The set of functions computed by EFNNs with identity

activation function, GI , is a subset of the set of functions computed by EFNNs with

ReLU activation function, GR, if for any network, N, with identity activation function

whose output is g , there exists a network, N 1, with ReLU activation function whose

output is also g .

Let the number of hidden layers of N is l and number of neurons at ith layer is di for

i “ 1, 2, . . . , l, then N 1 can be constructed with l hidden layers, each containing di1

neurons for i “ 1, 2, . . . , l, where

di
1
“

$

’

&

’

%

2di if i ă l,

di if i “ l.
(3.70)

39



Let input dimension be d0, u1 be the parameters of N 1 and u be the parameters of N.

u1 can be computed from u at the first and last layers, as follows,

Wu1, 1 “

”

Wu, 1 ´Wu, 1

ı

d0ˆd1
1
, (3.71)

bu1, 1 “

”

bu, 1 ´bu, 1

ı

d1
1ˆ1

, (3.72)

Wu1, l “

»

–

Wu, l

´Wu, l

fi

fl

dl´1
1ˆdl

1

, (3.73)

bu1, l “bu, l, (3.74)

for the hidden layers, i “ 2, . . . , l ´ 1

Wu1, i “

»

–

Wu, i ´Wu, i,

´Wu, i Wu, i

fi

fl

di´1
1ˆdi

1

, (3.75)

bu1, i “

”

bu, i ´bu, i

ı

di
1ˆ1

. (3.76)

This construction is done, so that

hipx, u
1, ReLUq “

»

–

ReLUphipx, u, I qq

ReLUp´hipx, u, I qq

fi

fl

di
1ˆ1

, (3.77)

for i “ 1, 2, . . . , l ´ 1 and

hlpx, u
1, ReLUq “ hlpx, u, I q “ gpxq, (3.78)

where ReLU is rectified linear unit and I is identity function. Equations (3.77)

and (3.78) can be verified as follow,

The output of the first layer is

h1px, u
1, ReLUq “ReLUpWT

u1, 1x` bu1, 1q

“

»

–

ReLUpWT
u, 1x` bu, 1q

ReLUp´WT
u, 1x´ bu, 1q

fi

fl

“

»

–

ReLUph1px, u, I qq

ReLUp´h1px, u, I qq

fi

fl .

(3.79)

40



Hidden layers except the last one requires the calculation of

Wu1, i ˛ hi´1px, u
1, ReLUq, (3.80)

which is equivalent to
»

–

Wu, i ´Wu, i,

´Wu, i Wu, i

fi

fl ˛

»

–

ReLUphi´1px, u, I qq

ReLUp´hi´1px, u, I qq

fi

fl , (3.81)

assuming

hi´1px, u
1, ReLUq “

»

–

ReLUphi´1px, u, I qq

ReLUp´hi´1px, u, I qq

fi

fl , (3.82)

for i “ 2, . . . , l ´ 1. Considering the Lemma 3.3.6, equation (3.81) becomes
»

–

Wu, i ˛ ReLUphi´1q ` p´Wu, iq ˛ ReLUp´hi´1q

p´Wu, iq ˛ ReLUphi´1q `Wu, i ˛ ReLUp´hi´1q

fi

fl , (3.83)

where for the sake of simplicity we use hi´1 “ hi´1px, u, I q. This equation becomes

»

–

signpWu, iq
Thi´1 `WT

u, isignphi´1q

´signpWu, iq
Thi´1 ´WT

u, isignphi´1q

fi

fl , (3.84)

or equivalently, using Lemma 3.3.7,
»

–

Wu, i ˛ hi´1px, u, I q

´Wu, i ˛ hi´1px, u, I q

fi

fl . (3.85)

Therefore,

hipx, u
1, ReLUq “ReLUpWu1, i ˛ hi´1px, u

1, ReLUq ` bu1, iq

“ReLU

˜

»

–

Wu, i ˛ hi´1px, u, I q

´Wu, i ˛ hi´1px, u, I q

fi

fl`

»

–

bu, i

´bu, i

fi

fl

¸

“

»

–

ReLUphipx, u, I qq

ReLUp´hipx, u, I qq

fi

fl .

(3.86)

Finally, the output of the last layer is

hlpx, u
1, ReLUq “WT

u1, lhl´1px, u
1, ReLUq ` bu1, l

“WT
u, lReLUp´oq ` p´Wu, lq

TReLUp´oq ` bu, l

“WT
u, lo` bu, l

“hlpx, u, I q,

(3.87)

41



where o is hl´1px, u, I q, as desired.

Proof of Theorem 3.3.1. Proposition 3.3.5 shows that the set of functions computed

by EFNNs with identity activation function, GI , is a subset of the set of functions

computed by EFNNs with ReLU activation function, GR, and Proposition 3.3.3 shows

that GI is dense in L1pId0q. Consequently GR is dense in L1pd0q as one of its subsets

is dense in L1pd0q. Density of these sets implies that for any function g P L1pId0q and

ε ą 0, there is a function G P GI which is computed by NI and NR, EFNNs with

activation functions identity and ReLU, respectively, such that

|Gpxq ´ gpxq| ă ε, (3.88)

for all x P Id0 . This implies that EFNNs can approximate any bounded measurable

function arbitrarily well given sufficiently large number of neurons used if activation

function is either identity or ReLU. The question of how much neuron is sufficient to

approximate a function with given the degree of error, is not investigated.

3.4 Behavior of EF Neural Networks from Parameters Perspective

Discontinuity of ef-operator causes EFNNs to compute very different functions de-

pending on the parameters. This phenomenon can be understood through a simple

example containing three neurons.

Example 3.4.1. Let us assume that activation function is identity for the simplicity.

Also, let us assume that u0 “ rpw1, b1q, pw2, b2q, pw3, b3qs is the parameters of this

network. The functions computed by this network given at below:

h3px, u0, I q “

$

’

’

’

’

&

’

’

’

’

%

´w3w1x` w3w2signpw1x` b1q ` w3pb2 ´ b1q ` b3 if w2 ă 0,

w3b2 ` b3 if w2 “ 0,

w3w1x` w3w2signpw1x` b1q ` w3pb2 ` b1q ` b3 otherwise.
(3.89)

42



An important observation is that

lim
w2Ñ0´

h3px, u0, I q “ ´ w3w1x` w3pb2 ´ b1q ` b3, (3.90)

lim
w2Ñ0`

h3px, u0, I q “w3w1x` w3pb2 ` b1q ` b3. (3.91)

Any neighborhood of u0 when w2 is zero, will contain parameters giving rise to very

different functions, two linear functions with slopes ´w3w1 and w3w1, unless

w3pw1x` b1q, (3.92)

is 0. Left and right limits are different for this particular example, this means that if

the desired function lies in one of the limits, then most of the optimization techniques

may fail to converge unless they take this information into account, especially if w2

changes sign during optimization as this change will cause significant changes on

derivatives of other parameters.

Let us now inspect how EFNNs behave on different sets of parameters with respect to

finite set of sample vectors. Firstly, an equivalence relation which relates parameters

causing EFNNs to compute similar functions, will be defined. Afterwards, partitions

induced by this relation will be inspected with respect to activation function.

The EFNNs which will be inspected throughout this section assumed to have l hidden

layers with ith layer containing di many neurons for all i “ 1, 2, . . . , l and inputs are

d0-dimensional vectors. Also, X will denote the set of finitely many d0-dimensional

real vectors which represents the training samples.

Definition 3.4.2. Let u and v be elements of R. They are related by the relation„X , f

if and only if

signpWu, iq “ signpWv, iq, (3.93)

for all i “ 2, . . . , l ´ 1 and

signphjpx, u, f qq “ signphjpx, v, f qq, (3.94)

for all j “ 1, 2, . . . , l´ 2 and for any x P X . „ will be used instead of the „X , f for

the brevity at the remainder of this section.

43



Proposition 3.4.3. The relation „X , f is an equivalence relation.

Proof. Recall that, a relation is an equivalence relation if it is reflexive, symmetric

and transitive [77]. Let us check the properties of „:

‚ Reflexivity: The relation is reflexive if u „ u for any u P R [77], which is

trivially follow from the definition.

‚ Symmetry: The relation is symmetric if u „ v implies v „ u for any u, v P

R [77]. u „ v implies v „ u as

signpWu, iq “ signpWv, iq, (3.95)

implies

signpWv, iq “ signpWu, iq, (3.96)

for all i “ 2, . . . , l ´ 1, and

signphjpx, u, f qq “ signphjpx, v, f qq, (3.97)

implies

signphjpx, v, f qq “ signphjpx, u, f qq, (3.98)

for all j “ 1, 2, . . . , l ´ 2 and for any x P X .

‚ Transitivity: The relation is transitive if u „ v and v „ v1 implies u „ v1 for

any u, v, v1 P R [77]. u „ v and v „ v1 implies u „ v1 as

signpWu, iq “ signpWv, iq, (3.99)

and

signpWv, iq “ signpWv1, iq, (3.100)

implies

signpWu, iq “ signpWv1, iq, (3.101)

for all i “ 2, . . . , l ´ 1, and

signphjpx, u, f qq “ signphjpx, v, f qq, (3.102)

44



and

signphjpx, v, f qq “ signphjpx, v
1, f qq, (3.103)

implies

signphjpx, u, f qq “ signphjpx, v
1, f qq, (3.104)

for all j “ 1, 2, . . . , l ´ 2 and for any x P X .

Hence, „X , f is an equivalence relation.

Proposition 3.4.3 shows that „ is an equivalence relation. Consequently, it induces a

partitioning scheme for R [77].

Definition 3.4.4. Let PX , f ,u be the set of points in R which are equivalent to u with

respect to „ for each u P R. The sets PX , f ,u and PX , f ,v for any u, v P R is either

disjoint or same set as „ is an equivalence relation. Consequently, the family of sets

tPX , f ,u|u P Ru (3.105)

is a partition of R. Pu will be used instead of the PX , f ,u for the brevity at the

remainder of this section.

One important issue about these partitions are some of them may not be closed. Con-

sequently, local infimum may not be attainable in some partitions. Furthermore, the

mappings computed in neighbor partitions can be drastically different. Reader can re-

fer to example 3.4.1 to see that the difference between mappings computed by neigh-

bor partitions. Let us assume that there is no input vector, in other words X “ H for

the simplicity. Then, there are three partitions in example 3.4.1, which areRˆR`ˆR,

Rˆt0uˆR, andRˆR´ˆR. First and third partitions are open and second partition

is closed in this example. Furthermore, second partition is actually boundary of first

and third partitions. Consequently, all three partitions are neighbor. Example 3.4.1

showed that there are points from both first and third partitions in neighborhood of

points in the second partition, such that the difference between the mappings com-

puted by these points are not bounded by a function of distance between these points.

45



Definition 3.4.5. A function g will be called sign-wise linear if

gpαx` p1´ αqyq “ αgpxq ` p1´ αqgpyq (3.106)

for any α P r0, 1s when

signpgpxqq “ signpgpyqq (3.107)

for any x and y.

Proposition 3.4.6. If g is a sign-wise linear function, then

signpgpαx` p1´ αqyqq “ signpgpxqq, (3.108)

for any α P r0, 1s, when

signpgpxqq “ signpgpyqq, (3.109)

for any x, y P Rd.

Lemma 3.4.7.

signpαx` p1´ αqyq “ signpxq, (3.110)

if

signpxq “ signpyq, (3.111)

for any x, y P R and for all α P r0, 1s.

Proof. For any x, y P R

αx` p1´ αqy P rminpx, yq, maxpx, yqs, (3.112)

and signpxq “ signpyq implies one of the following three cases;

0 ďminpx, yq ď αx` p1´ αqy ď maxpx, yq if x ą 0, (3.113)

0 “minpx, yq ď αx` p1´ αqy ď maxpx, yq “ 0 if x “ 0, (3.114)

0 ěminpx, yq ě αx` p1´ αqy ď maxpx, yq if x ă 0, (3.115)

in any case signpxq “ signpαx` p1´ αqyq, as desired.

46



Proof of Proposition 3.4.6. This is immediate result of Lemma 3.4.7. Replacing x

with gpxq and y with gpyq at equations (3.110) and (3.111) proves this proposition.

Proposition 3.4.8. Partition Pu is convex for each u P R if activation function f is

sign-wise linear.

Lemma 3.4.9. If f is a sign-wise linear function, then

hipx, αv ` p1´ αqv
1, f q “ αhipx, v, f q ` p1´ αqhipx, v

1, f q, (3.116)

for any u P R, for any v, v1 P Pu, for any x P X , for any α P r0, 1s, and for all

i “ 1, 2, . . . , l ´ 1 and if i ă l ´ 1, then

signphipx, αv ` p1´ αqv
1, f qq “ signphipx, u, f qq. (3.117)

Proof. vα will denote

vα “ αv ` p1´ αqv1, (3.118)

throughout this proof. Let

hipx, vα, f q “ f pni, αpxqq, (3.119)

for i “ 1, 2, . . . , pl ´ 1q. If

ni, αpxq “ αni, 0pxq ` p1´ αqni, 1, (3.120)

for x P X , then equation (3.116) is satisfied for i “ 1, 2, . . . , pl ´ 1q as f is a sign-

wise linear function. If equation (3.116) is satisfied, then equation (3.117) is, also,

satisfied by Proposition 3.4.6 as

signphipx, u, f qq “signphipx, v, f qq (3.121)

signphipx, v, f qq “signphipx, v
1, f qq (3.122)

as v, v1 P Pu implies v „ u and v1 „ u, and by transitivity v „ v1 if i ă l ´ 1.

If i “ 1, then

n1, αpxq “W
T
vα, 1x` bvα, 1

“pαWv, 1 ` p1´ αqWv, 1q
Tx` pαbv, 1 ` p1´ αqbv, 1q

“αn1, 0pxq ` p1´ αqn1, 1pxq,

(3.123)

47



as desired.

If i ă l, then

ni, αpxq “ signpWvα, iq
Thi´1px, vα, f q `WT

vα, isignphi´1px, vα, f qq ` bvα, i

(3.124)

First term on the right side of the equation (3.124) can be written as,

αsignpWV, iq
Thi´1px, v, f q ` p1´ αqsignpWV 1, iq

Thi´1px, v
1, f q, (3.125)

assuming the claim shown for i ´ 1 and using the fact that u „ v „ v1 with

Claim 3.4.7.

Second term on the right side of the equation (3.124) can be written as

αWT
V, isignphi´1px, v, f qq ` p1´ αqW

T
V 1, isignphi´1px, v

1, f qq, (3.126)

assuming the claim shown for i´ 1 and using the equation (3.117) with Claim 3.4.7.

Third term on the right side of the equation (3.124) can be written as

αbv, i ` p1´ αqbv1, i. (3.127)

Combining all three terms results

nα i “ αn0, i ` p1´ αqn1, i, (3.128)

as desired.

Proof of Proposition 3.4.8. The partition Pu is convex if

vα “ αv ` p1´ αqv1 P Pu, (3.129)

for any v, v1 P Pu and for any α P r0, 1s. vα P Pu if vα „ u by definition or

equivalently

signpWvα, iq “signpWu, iq (3.130)

signphjpx, vα, f qq “signphjpx, u, f qq (3.131)

48



for all i “ 2, . . . , l ´ 1, j “ 1, 2, . . . , l ´ 2, and for any x P X .

v, v1 P Pu implies

signphjpx, vα, f qq “ signphjpx, u, f qq (3.132)

for any x P X and for all i “ 1, 2, . . . , l ´ 2 by Lemma 3.4.9 and it also implies

v „ u and v1 „ u. By transitivity of „, v „ v1 which implies

signpWu, iq “ signpWv, iq, (3.133)

signpWv, iq “ signpWv1, iq, (3.134)

for any i “ 2, . . . , l ´ 1. Equation (3.134) implies

signpWv, iq “ signpWvα, iq, (3.135)

by Lemma 3.4.7 and when combined with equation (3.133) results equation (3.134).

Therefore, vα „ u and consequently, Pu is convex.

3.5 Chapter Summary

This chapter starts with defining ef-operator and discussing some of its prominent

properties, such as multiplication free-implementability similarities and dissimilar-

ities to vector multiplication. Afterwards, a feed forward network architecture is

proposed based on ef-operator. Remainder of the chapter analyzes the properties of

proposed network. Analysis shows that 4 layered or deeper proposed networks have

universal approximation capacity if activation function is selected as either identity

or ReLU. Analysis also includes the dependency of EFNNs on the parameters with

respect to some set of input vectors. An equivalence relation between parameters is

defined with respect to input vectors and the activation function. Analysis of this re-

lation showed that partitions induced by this relation splits the parameter space into

convex sets if the activation function behaves linearly between two points whose sign

under the activation function is same. Analysis also shows that, mappings computed

by the last hidden layer of EFNNs are linear with respect to parameters in each parti-

tion at input vectors.

49



50



CHAPTER 4

MODIFIED BACKPROPAGATION ALGORITHM WITH LINE SEARCH

FOR TRAINING EF NEURAL NETWORKS

Classic ANNs employ generally well-behaving activation functions, which have con-

tinuous partial derivatives on the whole space. However, this is not the case for

EFNNs. In Section 3.4, we showed that parameter space of EFNNs can be splited

into convex partitions where the resulting functions are similar to each other, while

different partitions may contain different functions. Some of these partitions are not

closed and consequently, local optimum may not be attainable in these partitions.

Also, transition between different partitions may cause unbounded changes on partial

derivatives causing the search algorithms to diverge from desired local optimum. This

section introduces a modified version of backpropagation algorithm, called backprop-

agation with line search (BLS), which considers the properties of EFNNs mentioned

in the previous chapter. In the following subsections, we first analyze the training of

EFNNs to approximate linear functions with standard backpropagation algorithms.

Next, we discuss the problem of non-attainable local optimum through this analy-

sis. Afterwards, we propose a possible solution to this problem, namely the BLS

algorithm. Finally, we analyze the convergence properties of BLS algorithm.

4.1 A case study: Learning Linear Functions

Linear functions are one of the simplest class of functions and usually can be rep-

resented by most of the machine learning algorithms. However, training an EFNN

to represent a linear function with standard backpropagation algorithm is quite dif-

51



ficult. A simple efnn containing 4 neurons with identity activation function trained

to approximate a simple linear function y “ 2x. 100 data points uniformly sampled

from the interval r´100, 100s as training samples. Training is done using adaptive

moment estimation (ADAM) optimization algorithm without minibatches. Learning

rate is taken as 1 during training trials. Suggested values used for other hyper param-

eters which are 0.9 for β1, 0.999 for β2 and 10´8 for ε. Objective function is taken

as mean square error between predicted values and expected values. 10 training trials

using ADAM optimizers and other hyper parameters are performed with 10 different

sets of initial parameters sampled according to following normal distributions,

N
´

0,
2

nin ` nout

¯

, (4.1)

N p0, 10´4q, (4.2)

where nin is the number of neurons in the previous layer, and nout is the number

of neurons in the current layer as suggested by Glorot et al. [33]. Weights are sam-

pled independently from the distribution (4.1) and biases are sampled independently

from the distribution (4.2). Each training trial is halted after 100,000 iterations unless

algorithm terminated earlier. Results of these training trials can be seen in figure 4.1.

One important phenomenon to notice in figure 4.1 is that training procedure repeat-

edly minimizes the objective function by converging to global optimum, and diverg-

ing from this point when it gets too close. ADAM, optimization method is a robust

method which is designed to be wide range of optimization problems. In the case of

optimizing difference between linear function and approximation calculated by the

EFNNs, ADAM, method generates a sequence of update points toward the global

optimum. However, when the distance between the current parameters and global

optimum becomes sufficiently small, next update value causes transition to another

partition resulting unbounded increase in MSE. ADAM, method generates another se-

quence of update points toward the global optimum until it diverges again. Note that,

even for linear functions, which are exceedingly simple functions, standard backprop-

agation algorithm cannot converge when training EFNNs. Considering the complex

data sets, EFNNs may result in more complex problems, which cannot be solved

without considering properties of EFNNs.

52



Figure 4.1: Change of mean squared error during training EFNN with standard back-

propagation algorithm to approximate the linear function y “ 2x.

53



4.2 Backpropagation with Line Search

Standard backpropagation algorithm given in algorithm 2.1, can be divided into three

sub-procedure. i) Calculating objective function with a forward pass, ii) computing

minimizers for parameters and iii) updating parameters. Proposed modification is to

add a line search between minimizer, ut
1 and current parameters ut before updating

them.

Let L be the objective function to minimize, M be an optimizer which returns min-

imizer vector for the objective function, and X ˆ Y be the input vectors with their

expected output. Assuming that training is done for a l-layered EFNN with starting

point u0, proposed algorithm can be seen at 4.1. λ “ tλtu
8

t“1 on the algorithm is a

sequence with λt ě 1 for each t “ 1, 2, . . ., and

lim
TÑ8

T
ź

t“1

λt, (4.3)

exists and it is finite. The backpropagation with line search (BLS) algorithm usign

these notations given in pseudo-code 4.1.

Suggested modification is based on the observation that partitions, Put , are convex by

proposition 3.4.8, which means that any point over a line segment between ut and an-

other point u1t will reside in Put , if u1t P Put . The main idea is, if the minimizer causes

an increase on the objective function, then there is two possibilities. First possibil-

ity is that minimizer is still in the same partition, however magnitude of the update

was too much that local optimum is missed. Second possibility is that minimizer re-

sides in another partition and mappings computed in this partition are different than

mappings computed in previous partition and the distance between these two sets of

mappings is not bounded by the magnitude of the change of parameters. Reader can

refer to example 3.4.1 for an example. Line search will find a point decreasing ob-

jective function in the first case, assuming local optimum was on the direction of the

minimizer. However, the latter case is more problematic because of the following

reasons: There are two possibilities, either line search can return to original parti-

tion which means the goal is still at the same local optimum, or line search terminate

54



Algorithm 4.1 Backpropagation with line search algorithm
procedure BLS(X , Y , λ,u0)

tÐ 0

while not converged do

αÐ 2

Lt Ð LphlpX , ut´1, f q,Yq
tÐ t` 1

Compute minimizer, u1t´1 Ð M pL, ut´1q

∆ut´1 Ð u1t´1 ´ ut´1

repeat

αÐ α{2

L1t`1 Ð LphlpX , ut´1 ` α∆ut´1, f q,Yq
until L1t`1 ď λtLt or α ă ε

if α ă ε then

Break

else

ut Ð ut´1 `∆ut´1

end if

end while

return ut

end procedure

on another partition. Although, line search terminating on another partition does not

mean that this partition have a lower local infimum. The new partition contains at

least one parameter which is not worse at optimizing objective function than current

parameter. However, this is also the case for standard backpropagation algorithm. In

fact, there is no guarantee that new partition will contain at least one parameter which

minimizes objective function better than current parameter. An additional important

point is that BLS can create a converging sequence to the boundary of a partition if a

local optimum is on the boundary, even if local infimum is not attainable.

55



A remark on the selection of λ. Although, equation (4.3) restricts the selection of

λ, most sequences can be used as λ in practice, assuming training will be done for

limited number of iterations. Any sequence of positive real numbers equal or greater

than one with finitely many entries greater than one, satisfies equation (4.3). Small

constant λt values will cause algorithm to exploit current partition to converge to a

point inside the initial partition or another neighbor partition. Exponentially decaying

sequences can be used to search different partitions at the start of training and restrict

search to few partitions near the end of training. Similarly, sufficiently small constant

values can be used to search different partitions without restricting search to current

partition. Smallness of the constant value depends on the objective function. Change

of partition requires change of sign on either some weight or some output. Any

constant value limiting the change from positive to non-positive output due to increase

on objective function can be treated as small. Small constant values will prevent

from current partition to another partition where mappings differ greatly from target

mapping. On the other hand, large constant values will result non-restricted search

causing divergence problem similar to the standard backpropagation algorithm.

4.3 Computational Complexity of BLS

This algorithm computationally is not less efficient than standard backpropagation

algorithm. Modification requires multiple forward pass and multiple parameter up-

dates. However, number of forward passes is bounded with log2pεq, which can be

set according to machine precision and can be treated as constant. Furthermore, BLS

does not require external early stopping criteria to catch the local minimum as algo-

rithm terminates if there is no viable update on the direction of the minimizer. Next

iteration will not produce a new minimizer and consequently algorithm will not con-

tinue to update parameters, assuming optimizer will return the same minimizer at the

same point regardless of iterations.

56



4.4 Convergence of Backpropagation with Line Search Algorithm

Let us now, investigate the convergence properties of BLS, and show that it cannot

diverge.

Theorem 4.4.1. Backpropagation algorithm with proposed modification will create a

converging sequence of parameters for EFNNs, regardless of the initial parameters,

u0, quality of the minimizer, M , and tλtu
8

t“1 sequence, as long as

lim
TÑ8

T
ź

t“1

λt, (4.4)

exists and it is finite.

Proof. Let

L “ tLt “ LphlpX , ut, f qq|t “ 0, 1, . . .u, (4.5)

be the sequence of outputs of objective function after each update.

Lt`1
1
ď λtLt, (4.6)

requirement in the algorithm 4.1 implies

Lt ď
t
ź

i“1

λiL0 ď λL0, (4.7)

for t “ 1, 2, . . ., where

λ “ lim
TÑ8

T
ź

i“1

λi. (4.8)

There are three cases to be considered. In the first case, there are finitely many t such

that

Lt ď Lt`1. (4.9)

In the second case, there are finitely many t1 such that

Lt1 ě Lt1`1. (4.10)

In the third case, there are infinitely many t satisfying equation (4.9) and there are

infinitely many t1 satisfying equation (4.10).

57



The first case implies that there is a T such that

Lt ą Lt`1, (4.11)

for all t ą T . This means that the sequence tLT`1, LT`2, . . .u is a monotonically

increasing sequence bounded above with λL0. Hence, this sequence converge by the

monotone convergence theorem [76].

The second case implies that there is a T 1, such that;

Lt ă Lt`1, (4.12)

for all t ą T 1. This means that the sequence tLT 1`1, LT 1`2, . . .u is a monotonically

decreasing sequence bounded below with 0. Hence, this sequence converge by the

monotone convergence theorem [76].

The third case implies that there is no T 2, such that the sequence tλtuT 2
8 is mono-

tone, and consequently monotone convergence theorem cannot be used in this case.

However, sequence is still bounded both from above, λL0 and from below, 0. There-

fore, there exists a subsequence, tLa1 , La2 , . . .u of L which converges by Weirstrass-

Bolzano theorem [76]. Let us say they converge to l. Showing for any ε ą 0, there

exists Tε, such that

|Lt ´ l| ă ε (4.13)

for any t ą Tε, is enough to show that L converges to l [76]. Equation (4.8) implies

that

logpλq “ log
´

lim
TÑ8

T
ź

i“1

λi

¯

“ lim
TÑ8

T
ÿ

i“1

logpλiq.

(4.14)

Let

st “
t
ÿ

i“1

logpλiq, (4.15)

for all t. Equation (4.14) implies that

lim
tÑ8

st “ logpλq, (4.16)

58



and as a convergence sequence, this sequence is a Cauchy sequence [76]. Conse-

quently, there exists T0, ε such that

|sm ´ sn| ă log
´

1`
ε

2l` ε

¯

(4.17)

for any n, m ą T0, ε or equivalently
m
ź

i“n`1

λi ă
l` ε

l` ε{2
, (4.18)

assuming m ą n. Similarly, there exists T1, ε such that

|sm ´ sn| ă log
´

1`
ε

2l´ 2ε

¯

(4.19)

for any n, m ą T0, ε given ε ă l or equivalently
m
ź

i“n`1

λi ă
l´ ε{2

l´ ε
, (4.20)

assuming m ą n.

The sequence tLa1 , La2 , . . .u converges to l implies that there exists T2, ε such that

|Lat ´ l| ă ε{2, (4.21)

for any t ą T1, ε.

If

ε1 “ minpε, l{2q, (4.22)

and

T “ maxpT0, ε1 , T1, ε1 , T2, ε1 , a1uq, (4.23)

then, for any t ą T , either there exists t1 such that at1 “ t or at1 ă t ă at1`1. If

at1 “ t, then, |lt ´ l| ă ε by equation (4.21), and otherwise

Lt ď
t
ź

i“at1`1

λiLa1t ă
´ l` ε

l` ε{2

¯

pl` ε{2q “ l` ε, (4.24)

Lt ě
Lat1`1

at1`1
ś

i“t`1

λi

ą
l´ ε{2
l´ε{2
l´ε

“ l´ ε. (4.25)

Therefore, L converges to l.

L converges at all three cases, and so it converges.

59



Theorem 4.4.1 states that BLS will converge for any given set of initial parameters

and for any minimizer. However, convergence does not guarantee a viable solution.

The final value of objective function is strongly depends on the selection of both

initial parameters and the minimizer. The algorithm can converge to non-infimum

points depending on the choice of initial parameters and update values generated by

the minimizer.

4.5 Chapter Summary

This chapter starts by analyzing the convergence properties for training EFNNs with

the standard backpropagation algorithm. The analysis is exemplified through a simple

problem of learning approximation of a linear function, y “ 2x. A modification to

backpropagation is proposed, which adds a line search step before updating param-

eters to prevent EFNNs from diverging. Next, the proposed modification is investi-

gated for training EFNN and motivation behind the suggested modification discussed,

Finally, convergence of training procedures with proposed modification is shown to

be independent from selection of initial parameters and hyper-parameters of opti-

mization technique used. Although, the convergence does not depend on selection of

hyper-parameters and initial parameters, quality of end result depends on the selec-

tion of these parameters. Consequently, proposed modification does not eliminate the

necessity of parameter search for converging to a better local optimum.

60



CHAPTER 5

EXPERIMENTS

This section experimentally compares the standard backpropagation algorithm and

backpropagation with line search (BLS) in training EFNN. Experiments are done on

XOR problem, several multi-class classification problems from UCI data sets [53],

and on hand-written digit classification problem, MNIST [52]. We analyze the clas-

sification accuracies of trained networks with both algorithms using multiple hyper-

parameters, initial parameters and different selections of λ, limiting factor on the in-

crease in objective function. Comparisons are done over a variety of network topolo-

gies, activation functions, and optimization methods for each data set.. The code

for experiments is implemented using python with theano library [7]. 32-bit float-

ing point numbers are used during experiments and ε is taken as 2´32 considering

precision of 32-bit floating point numbers.

5.1 Learning Linear Functions Revisited

In Section 4.1, we inspect the problems of training an EFNN with standard back-

propagation results. One important problem was that whenever objective function

becomes sufficiently small, the next update on parameters causes jump on output of

objective function. Same experiments are repeated using BLS algorithm. Shared pa-

rameters are not changed during these experiments. BLS related parameter λt is taken

as

1` δt, (5.1)

61



where δ “ 1 ´ 10´8. Figure 5.1 shows comparison between training of EFNN with

standard backpropagation algorithm and BLS algorithm.

Figure 5.1 shows that BLS algorithm can either achieve the same loss as standard

backpropagation algorithm, or terminates early without training network properly.

Choice of λ does not allow large increases on the loss function. This can be restric-

tive when training procedure requires sequence of points causing increase on the loss

to converge. The sequence generated by the training procedure depends on hyper-

parameters as well as initial parameters. Experiments show that usage of different

initial parameters is enough to overcome this problem. Although, these phenomena

can be observed commonly, proposed algorithm stops early in these cases, usually

around 100th iteration, allowing multiple initial points to be tried without losing much

time on a “bad” initial parameter set. On the other hand, if BLS train the network

properly, then optimum parameters usually found earlier than standard backpropaga-

tion, and the algorithm terminates training procedure automatically.

5.2 Learning XOR Problem by EFNN

XOR problem is relatively simple non-linear function approximation problem. It

is one of the two binary Boolean function out of sixteen possible binary Boolean

function whose output cannot be linearly separated. Although, it is a simple problem,

it is complex enough not to be classified correctly by linear classifiers. Table 5.1

describes the XOR operator.

Table 5.1: Description of XOR operator.

x y x‘ y

0 0 0
0 1 1
1 0 1
1 1 0

62



Figure 5.1: Change of mean squared error during training EFNN with standard back-

propagation algorithm and BLS to learn the linear function y “ 2x.

63



5.2.1 Experimental Design

Training of EFNNs is done using both standard backpropagation algorithm and the

suggested backpropagation with line search (BLS) algorithm. Two different λs are

used during the experiments. One λ is taken a constant value 1, in other words, BLS

algorithm does not allow any increase on the loss function. Other λ is selected as

following exponentially decaying sequence,

λt “ 1` δ2
t

, (5.2)

where δ is a constant in the interval r0, 1q. δ value taken as p1´ 10´8q during exper-

iments. Each version will be called with λt value when results reported in the figures

and tables. Standard back propagation algorithm is a special case of BLS algorithm

with λt “ 8. The selection of exponentially decaying sequence done according to

following observation,
1´ δ2

T`1

1´ δ
“

T
ź

t“0

p1` δ2
T

q. (5.3)

Experiments are performed by using four different network topologies and two differ-

ent activation functions. Two different optimizers applied to minimize the objective

function. These two optimizers are stochastic gradient descent (SGD) and adaptive

moment estimation (ADAM). These two different activation functions are identity

and ReLU functions. And, these four network topologies tested in the experiments

are as follows,

‚ 2 hidden layers each of which containing 2 neurons,

‚ 2 hidden layers each of which containing 3 neurons,

‚ 3 hidden layers each of which containing 2 neurons,

‚ 3 hidden layers each of which containing 3 neurons,

These networks are trained with respect to mean square error at 4 points given in

table 5.1 using each optimizer and activation function combination.

64



Each training experiment is repeated with multiple hyper-parameters including dif-

ferent initial parameters, learning rates, and batch sizes. 4 different learning rates

are used during experiments. These learning rates are 1e-4, 1e-6, 1e-8, and 1e-10.

2 different batch sizes are used during experiments, which are 1 and 4. Each topol-

ogy, activation function, optimizer, learning rate and batch size combination is used

on training of EFNNs with different λ sequences starting from 25 different initial

parameters sampled according to following distributions,

N
´

0,
2

nin ` nout

¯

, (5.4)

N p0, 10´4q, (5.5)

where nin is number of neurons in the previous layer, and nout is number of neurons

in the current layer as suggested by by Glorot et al. [33]. Weights are sampled inde-

pendently from the distribution (5.4) and biases are sampled independently from the

distribution (5.5). Each training trial halted after 100,000 iterations unless algorithm

terminated earlier. ADAM method specific parameters β1, β2 and ε taken as default

values suggested by [48], which are 0.9, 0.999, 10´8, respectively.

5.2.2 Performances of EFNN with Standard Backpropagation and BLS

Table 5.2 presents the least mean square error obtained by standard backpropaga-

tion and the suggested BLS method using different hyper-parameters and initial pa-

rameters for each network topology, activation function, and optimizer triplet. Fig-

ure 5.2 shows the change of MSE during the training of one particular triplet consist-

ing ADAM optimizer, ReLU activation function and topology consisting of 3 hidden

layers each of which containing 3 neurons for each backpropagation version. Each

graph includes results of 20 trials selected according to least mean square error they

achieved.

Figure 5.2 shows that while most of the trials with standard backpropagation achieves

the small MSE, they continue to oscillate greatly even after reaching to optima allow-

ing MSE to increase as much as 108%. However, there are trials among these 20 trials

which cannot achieve acceptable MSE levels, even though each hyper-parameter set

65



Table 5.2: Least mean squared error achieved by standard backpropagation, λt “ 8,
BLS with constant λ, λt “ 1 and BLS with exponentially decaying λ, λt “ 1 ` δ2

t

where δ “ 10´8 on XOR problem using ADAM and SGD optimizers with ReLU
and identity activation functions for networks consisting 2 and 3 hidden layers which
contain either 2 or 3 neurons.

Network λt SGD ADAM

2 hidden layers
2 neurons
Identity

8 1.01e´ 09 0.00e` 00

1 2.11e´ 02 3.02e´ 06

1` δ2
t

1.18e´ 02 3.02e´ 06

2 hidden layers
2 neurons

ReLU

8 4.00e´ 12 0.00e` 00

1 7.21e´ 12 2.32e´ 14

1` δ2
t

7.21e´ 12 1.34e´ 13

2 hidden layers
3 neurons
Identity

8 7.29e´ 10 0.00e` 00

1 2.75e´ 09 1.12e´ 03

1` δ2
t

2.75e´ 09 1.48e´ 05

2 hidden layers
3 neurons

ReLU

8 7.98e´ 12 0.00e` 00

1 2.82e´ 11 9.15e´ 17

1` δ2
t

2.82e´ 11 4.88e´ 18

3 hidden layers
2 neurons
Identity

8 1.57e´ 08 0.00e` 00

1 5.07e´ 03 4.00e´ 11

1` δ2
t

1.42e´ 09 3.63e´ 11

3 hidden layers
2 neurons

ReLU

8 2.72e´ 11 0.00e` 00

1 1.22e´ 11 1.07e´ 13

1` δ2
t

1.22e´ 11 8.39e´ 14

3 hidden layers
3 neurons
Identity

8 5.73e´ 11 0.00e` 00

1 1.38e´ 10 2.21e´ 12

1` δ2
t

1.38e´ 10 2.21e´ 12

3 hidden layers
3 neurons

ReLU

8 1.30e´ 11 0.00e` 00

1 5.06e´ 12 3.91e´ 16

1` δ2
t

4.77e´ 12 2.44e´ 15

tried using 25 different initial parameter set. On the other hand, although, both ver-

sions of BLS algorithm can achieve acceptable levels of losses only on 3 trials out

of 20 trials, they terminated automatically instead of allowing loss to diverge. BLS

seems to perform worse than standard backpropagation. However, effects of choice

66



Figure 5.2: The change of mean squared error with respect to iteration for trials

achieving minimal mean squared error when standard backpropagation, λt “ 8,

BLS with constant λ, λt “ 1, and BLS with exponentially decaying λ, λt “ 1 ` δ2
t

where δ “ 1 ´ 10´8, algorithms with ADAM used for training 3 hidden layered

EFNNs whose hidden layers consist of 3 neurons with ReLU activation function to

approximate XOR function.

67



of initial parameters on the success of training should be noted. Selection of λ as

either exponentially decaying sequence or constant 1, does not permit optimizer to

search hyper-parameter space effectively if initial parameter set is bad. This problem

can be solved with increasing the number of initial parameters.

5.3 Learning UCI Data Sets

The UCI data sets [53] usually used as benchmark data sets to test a novel machine

learning method. These data sets comes from real world problems and include dif-

ferent types machine learning problems including binary-classification, multi-class

classification and regression. Data sets may contain continuous attributes as well as

categorical attributes. In addition to, comparison of BLS and standard backpropaga-

tion algorithm, each of these 9 data sets is used for comparing classic feed-forward

neural networks and ef operator based neural networks (EFNN). These data sets are

abalone, connectionist bench, ecoli, glass identification, iris, leaf, letter recogni-

tion, wine, and yeast data sets. Each data set is used for evaluating the proposed

algorithm by training different EFNNs using different hyper-parameters.

5.3.1 Overview of Data Sets

This section gives a brief overview of each data sets, which includes types of feature

vectors and their dynamic ranges, as well as their mean values and standard devia-

tions. In addition to description of input vectors, number of classes in the data sets,

and number of samples for each of these classes are also provided.

5.3.1.1 Overview of Abalone Data Set

The main task of abalone data set is to predict the age of abalones. Data set con-

tains 4177 samples and each of the samples is represented by a 8-dimensional feature

vector. The type of the entries of feature vector is given in Table 5.3. Detailed infor-

mation regarding the feature space of this data set can be found at [64].

68



Table 5.3: The general structure of the entries of feature vectors of abalone data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Categorical 0 2 0.992 0.796
1 Continuous 0.075 0.815 0.524 0.12
2 Continuous 0.055 0.65 0.408 0.099
3 Continuous 0 1.13 0.14 0.042
4 Continuous 0.002 2.826 0.829 0.49
5 Continuous 1.0e-03 1.488 0.359 0.222
6 Continuous 5.0e-04 0.76 0.181 0.11
7 Continuous 0.002 1.005 0.239 0.139

The number of samples across 28 classes are given in Table 5.4, in addition to the

structure of feature vectors, given in Table 5.3. The distribution of samples for differ-

ent classes of abalone is highly unbalanced which can be seen from Table 5.4. There

is no prior division of samples as training and test samples. Therefore experiments

done using 5-fold stratified cross validation for abalone data set [71]. Classes with

indices 0, 1, 21, 22, 23, 24, 25, 26, and 27 have less than 10 samples and consequently

these classes can cause high variance between different folds.

Table 5.4: The number of samples of all 28 classes of abalone data set.

Class index Count Class index Count Class index Count

0 1 10 487 20 14
1 1 11 267 21 6
2 15 12 203 22 9
3 57 13 126 23 2
4 115 14 103 24 1
5 259 15 67 25 1
6 391 16 58 26 2
7 568 17 42 27 1
8 689 18 32
9 634 19 26

69



5.3.1.2 Overview of Connectionist Bench Data Set

The main task of connectionist bench data set is to predict correct vowel whose ut-

terance given by different speakers. Data set contains 990 samples and each of the

samples is represented by a 10-dimensional feature vector. The type of the entries of

feature vector is given in Table 5.5. Detailed information regarding the feature space

of this data set can be found at [23].

Table 5.5: The general structure of the entries of feature vectors of connectionist
bench data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Continuous -5.211 -0.941 -3.204 0.869
1 Continuous -1.274 5.074 1.882 1.175
2 Continuous -2.487 1.431 -0.508 0.712
3 Continuous -1.409 2.377 0.515 0.759
4 Continuous -2.127 1.831 -0.306 0.664
5 Continuous -0.836 2.327 0.63 0.604
6 Continuous -1.537 1.403 -0.004 0.462
7 Continuous -1.293 2.039 0.337 0.573
8 Continuous -1.613 1.309 -0.303 0.57
9 Continuous -1.68 1.396 -0.071 0.604

The number of samples across 11 classes are given in Table 5.6, in addition to the

structure of feature vectors, given in Table 5.5. The distribution of samples for dif-

ferent classes of connectionist bench is balanced which can be seen from Table 5.6.

There is a prior division of samples as training and test samples. 16 of 30 samples

from each class labeled as training samples and remaining 14 samples labeled as test

samples. This prior division used during experiments instead of 5-fold cross valida-

tion.

70



Table 5.6: The number of samples of all 11 classes of connectionist bench data set.

Class index Count Class index Count Class index Count

0 90 4 90 8 90
1 90 5 90 9 90
2 90 6 90 10 90
3 90 7 90

5.3.1.3 Overview of Ecoli Data Set

The main task of ecoli data set is to predict the localization site of proteins. Data

set contains 336 samples and each of the samples is represented by a 7-dimensional

feature vector. The type of the entries of feature vector is given in Table 5.7. Detailed

information regarding the feature space of this data set can be found at [63].

Table 5.7: The general structure of the entries of feature vectors of ecoli data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Continuous 0 0.89 0.5 0.194
1 Continuous 0.16 1 0.5 0.148
2 Continuous 0.48 1 0.495 0.088
3 Continuous 0.5 1 0.501 0.027
4 Continuous 0 0.88 0.5 0.122
5 Continuous 0.03 1 0.5 0.215
6 Continuous 0 0.99 0.5 0.209

The number of samples across 8 classes are given in Table 5.8, in addition to the

structure of feature vectors, given in Table 5.7. The distribution of samples for dif-

ferent classes of ecoli is highly unbalanced which can be seen from Table 5.8. There

is no prior division of samples as training and test samples. Therefore experiments

done using 5-fold stratified cross validation for ecoli data set [71].

71



Table 5.8: The number of samples of all 8 classes of ecoli data set.

Class index Count Class index Count Class index Count

0 20 3 5 6 77
1 52 4 2 7 143
2 2 5 35

5.3.1.4 Overview of Glass Identification Data Set

The main task of glass identification data set is to predict the type of glasses. Data

set contains 214 samples and each of the samples is represented by a 9-dimensional

feature vector. The type of the entries of feature vector is given in Table 5.9. Detailed

information regarding the feature space of this data set can be found at [27].

Table 5.9: The general structure of the entries of feature vectors of glass identification
data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Continuous 1.511 1.534 1.518 0.003
1 Continuous 10.73 17.38 13.41 0.815
2 Continuous 0 4.49 2.685 1.439
3 Continuous 0.29 3.5 1.445 0.498
4 Continuous 69.81 75.41 72.65 0.773
5 Continuous 0 6.21 0.497 0.651
6 Continuous 5.43 16.19 8.957 1.42
7 Continuous 0 3.15 0.175 0.496
8 Continuous 0 0.51 0.057 0.097

The number of samples across 6 classes are given in Table 5.10, in addition to the

structure of feature vectors, given in Table 5.9. The distribution of samples for dif-

ferent classes of glass identification is highly unbalanced which can be seen from

Table 5.10. There is no prior division of samples as training and test samples. There-

fore experiments done using 5-fold stratified cross validation for this data set [71].

72



Table 5.10: The number of samples of all 6 classes of glass identification data set.

Class index Count Class index Count Class index Count

0 70 2 17 4 9
1 76 3 13 5 29

5.3.1.5 Overview of Iris Data Set

The main task of iris data set is to predict the type of iris plants. Data set contains

150 samples and each of the samples is represented by a 3-dimensional feature vector.

The type of the entries of feature vector is given in Table 5.11. Detailed information

regarding the feature space of this data set can be found at [30].

Table 5.11: The general structure of the entries of feature vectors of iris data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Continuous 4.3 7.9 5.843 0.825
1 Continuous 2 4.4 3.054 0.432
2 Continuous 1 6.9 3.759 1.759
3 Continuous 0.1 2.5 1.199 0.761

The number of samples across 3 classes are given in Table 5.12, in addition to the

structure of feature vectors, given in Table 5.11. The distribution of samples for

different classes of iris is balanced which can be seen from Table 5.12. There is no

prior division of samples as training and test samples. Therefore experiments done

using 5-fold stratified cross validation for iris data set [71] where each fold contains

10 test samples from each class and 40 training samples from each class.

73



Table 5.12: The number of samples of all 3 classes of iris data set.

Class index Count Class index Count Class index Count

0 50 1 50 2 50

5.3.1.6 Overview of Leaf Data Set

The main task of leaf data set is to predict the specie of plant which the leaf be-

long to. Data set contains 340 samples and each of the samples is represented by a

14-dimensional feature vector. The type of the entries of feature vector is given in

Table 5.13. Detailed information regarding the feature space of this data set can be

found at [75].

Table 5.13: The general structure of the entries of feature vectors of leaf data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Continuous 0.117 0.999 0.72 0.208
1 Continuous 1.007 19.04 2.44 2.595
2 Continuous 0.108 0.948 0.514 0.195
3 Continuous 0.485 0.994 0.904 0.114
4 Continuous 0.396 1 0.944 0.115
5 Continuous 0.078 0.858 0.531 0.217
6 Continuous 0.003 0.199 0.037 0.039
7 Continuous 0.001 7.206 0.524 1.038
8 Continuous 0.005 0.191 0.051 0.036
9 Continuous 0.033 0.281 0.125 0.052

10 Continuous 0.001 0.073 0.018 0.014
11 Continuous 2.3e-04 0.03 0.006 0.005
12 Continuous 6.9e-06 0.003 3.9e-04 4.3e-04
13 Continuous 0.169 2.708 1.163 0.584

The number of samples across 30 classes are given in Table 5.14, in addition to the

structure of feature vectors, given in Table 5.13. The distribution of samples for

74



different classes of leaf is balanced which can be seen from Table 5.14. However,

each of the classes has small number of samples. There is no prior division of samples

as training and test samples. Therefore experiments done using 5-fold stratified cross

validation for leaf data set [71].

Table 5.14: The number of samples of all 30 classes of leaf data set.

Class index Count Class index Count Class index Count

0 12 10 16 20 11
1 10 11 12 21 12
2 10 12 13 22 12
3 8 13 12 23 12
4 12 14 10 24 11
5 8 15 12 25 11
6 10 16 11 26 11
7 11 17 13 27 11
8 14 18 9 28 11
9 13 19 12 29 10

5.3.1.7 Overview of Letter Recognition Data Set

The main task of letter recognition data set is to predict the correct capital letter in the

English alphabet written in one of the twenty different fonts. Data set contains 20000

samples and each of the samples is represented by a 16-dimensional feature vector.

The type of the entries of feature vector is given in Table 5.15. Detailed information

regarding the feature space of this data set can be found at [31].

The number of samples across 26 classes are given in Table 5.16, in addition to the

structure of feature vectors, given in Table 5.15. The distribution of samples for differ-

ent classes of letter recognition is balanced which can be seen from Table 5.16. There

is no prior division of samples as training and test samples. Therefore experiments

done using 5-fold stratified cross validation for letter recognition data set [71].

75



Table 5.15: The general structure of the entries of feature vectors of letter recognition
data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Categorical 0 15 4.024 1.913
1 Categorical 0 15 7.036 3.304
2 Categorical 0 15 5.122 2.015
3 Categorical 0 15 5.372 2.261
4 Categorical 0 15 3.506 2.19
5 Categorical 0 15 6.898 2.026
6 Categorical 0 15 7.5 2.325
7 Categorical 0 15 4.629 2.7
8 Categorical 0 15 5.179 2.381
9 Categorical 0 15 8.282 2.488

10 Categorical 0 15 6.454 2.631
11 Categorical 0 15 7.929 2.081
12 Categorical 0 15 3.046 2.332
13 Categorical 0 15 8.339 1.547
14 Categorical 0 15 3.692 2.567
15 Categorical 0 15 7.801 1.617

Table 5.16: The number of samples of all 26 classes of letter recognition data set.

Class index Count Class index Count Class index Count

0 789 9 739 18 758
1 736 10 747 19 813
2 766 11 792 20 796
3 768 12 761 21 752
4 805 13 753 22 764
5 773 14 783 23 786
6 775 15 783 24 787
7 755 16 803 25 734
8 734 17 748

76



5.3.1.8 Overview of Wine Data Set

The main task of wine data set is to predict the cultivar which the wine derived

from. Data set contains 178 samples and each of the samples is represented by a

13-dimensional feature vector. The type of the entries of feature vector is given in

Table 5.17. Detailed information regarding the feature space of this data set can be

found at [3].

Table 5.17: The general structure of the entries of feature vectors of wine data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Continuous 11.03 14.83 13 0.81
1 Continuous 0.74 5.8 2.336 1.114
2 Continuous 1.36 3.23 2.367 0.274
3 Continuous 10.6 30 19.5 3.33
4 Categorical 70 162 99.74 14.24
5 Continuous 0.98 3.88 2.295 0.624
6 Continuous 0.34 5.08 2.029 0.996
7 Continuous 0.13 0.66 0.362 0.124
8 Continuous 0.41 3.58 1.591 0.571
9 Continuous 1.28 13 5.058 2.312

10 Continuous 0.48 1.71 0.957 0.228
11 Continuous 1.27 4 2.612 0.708
12 Categorical 278 1680 746.9 314

The number of samples across 3 classes are given in Table 5.18, in addition to the

structure of feature vectors, given in Table 5.17. The distribution of samples for

different classes of wine is unbalanced which can be seen from Table 5.18. There is

no prior division of samples as training and test samples. Therefore experiments done

using 5-fold stratified cross validation for wine data set [71].

77



Table 5.18: The number of samples of all 3 classes of wine data set.

Class index Count Class index Count Class index Count

0 59 1 48 2 71

5.3.1.9 Overview of Yeast Data Set

The main task of yeast data set is to predict the localization site of proteins. Data

set contains 1484 samples and each of the samples is represented by a 8-dimensional

feature vector. The type of the entries of feature vector is given in Table 5.19. Detailed

information regarding the feature space of this data set can be found at [42].

Table 5.19: The general structure of the entries of feature vectors of yeast data set.

Dynamic range
Feature entry Type Min Max Mean of each Standard deviation

index value value entry of each entry

0 Continuous 0.11 1 0.5 0.137
1 Continuous 0.13 1 0.5 0.124
2 Continuous 0.21 1 0.5 0.087
3 Continuous 0 1 0.261 0.137
4 Continuous 0.5 1 0.505 0.048
5 Continuous 0 0.83 0.008 0.076
6 Continuous 0 0.73 0.5 0.058
7 Continuous 0 1 0.276 0.106

The number of samples across 10 classes are given in Table 5.20, in addition to the

structure of feature vectors, given in Table 5.19. The distribution of samples for dif-

ferent classes of yeast is highly unbalanced which can be seen from Table 5.20. There

is no prior division of samples as training and test samples. Therefore experiments

done using 5-fold stratified cross validation for yeast data set [71]. Class with index 8

has less than 10 samples and consequently this class can cause high variance between

different folds.

78



Table 5.20: The number of samples of all 10 classes of yeast data set.

Class index Count Class index Count Class index Count

0 35 4 429 8 5
1 20 5 44 9 244
2 463 6 163
3 30 7 51

5.3.2 Experimental Design

Selected UCI data sets are multi-class classification problems. Each classification

problem is formulated as the function approximation from feature vectors to one-

hot-vector-encoding of class labels. Experiments for UCI data sets consists of train-

ing trials which are performed by using multiple network topologies, two activation

functions, two optimizers and two objective functions, to approximate these func-

tions. Experiments compare the standard backpropagation algorithm and proposed

algorithm using different λ sequences on EFNNs. Five different λ sequences are

used for experiments. 4 of 5 different λ sequences are constants and other one is

exponentially decaying sequence. 4 constant values are 1, 2, 10, and 100. The con-

stant value 1 does not allow any increase on loss which results strict decrease on

loss, if no mini-batch is used. The constant value 2 allows small increments on loss

which may allow algorithm to explore more regions during any part of the training

without allowing divergence through prevention of visiting “bad” partitions. The loss

should increase drastically when parameters changed from “good” partition to “bad”

partition. The constant value 10 is more relaxed version of constant value 2 and the

constant value 100 should behave almost the same as the standard backpropagation

in most situations. Exponentially decaying sequence employed, is

λt “ 1` δ2
t

, (5.6)

where δ is 1´ 10´8. The exponentially decaying sequence satisfies the restriction

lim
TÑ8

T
ź

t“1

λt, (5.7)

79



exists and finite, whenever δ ă 1 as

1´ δ2
N`1

“ p1´ δq
N
ź

t“0

p1` δ2
t

q, (5.8)

for every N P Z`. Also, the sequence consisting of only 1s satisfies the restric-

tion. Although, other three sequences do not satisfy the restriction, violation of the

restriction is not an issue as training trials done for at most 1,000 iterations.

Two different network topologies, consisting of 2 hidden layers and 3 hidden layers

are used for experiments. There is no prior work on these data sets, which uses an

ef operator based algorithm. Henceforth, large number of hidden neuron combina-

tions tested to determine “best” working architectures. All topologies used during

experiments contain the same number of neurons in hidden layers. These numbers

are selected as 5, 10, 20, 50, and 100. Identity and ReLU functions are considered

for the activation function. Resulting EFNNs are trained with respect to mean square

error and average cross entropy loss functions using ADAM and SGD optimizers. If

average cross entropy used as loss function, then outputs of EFNNs normalized to

interval [0, 1] using softmax function.

Hyper-parameters for SGD are the learning rate and the number of mini-batches and

hyper-parameters for ADAM are the learning rate, the number of mini-batches, β1,

β2, and ε. β1, β2, and ε is not optimized, instead default values, suggested by original

authors [48] are used as 0.9, 0.99, and 10´8, respectively. Learning rates for the

optimizers are selected as 10´4, 10´6, 10´8, 10´10 using classification accuracy over

training data. Number of mini-batches are selected from 1 and 4 using classification

accuracy over training data. 10 randomly sampled initial parameter sets are selected

for each network topology using following normal distributions

N
´

0,
2

nin ` nout

¯

, (5.9)

and

N p0, 10´4q, (5.10)

where nin is number of neurons in the previous layer, and nout is number of neurons

in the current layer as suggested by by Glorot et al. [33]. Weights are sampled inde-

80



pendently from the distribution (5.9) and biases are sampled independently from the

distribution (5.10).

Full grid-search over hyper-parameters is done with two different initial points for

standard backpropagation algorithm to determine the best working network architec-

ture, activation function, loss function and optimizer combinations. Among these

trials 100 of them are selected for further trials according to average maximal train-

ing accuracy achieved over two initial parameter sets including all network topology,

activation function, loss function and optimizer quadruples, due to time and resource

constraints. Other initial parameters are tested using configurations of these trials for

standard backpropagation algorithm. BLS with different λ sequences are also tested

using configurations of these 100 trials over 10 initial parameter sets.

5.3.3 Results

Each subsubsection contains a table presenting the average test accuracy obtained

from different trials by each λ sequences using different hyper-parameters and ini-

tial parameters for different network topology, activation function, optimizer and loss

function quadruples. Each table contains a single two hidden layered network with

two activation functions (identity and ReLU) and single three hidden layered network

with two activation functions (identity and ReLU). These topologies are selected ac-

cording to maximal average training classification accuracy achieved by each topol-

ogy. The maximal average training classification performance achieved by a topol-

ogy is calculated as follow: Hyper-parameters and initial parameter sets maximaz-

ing training classification accuracy for each optimizer, objective function, activation

function, and λ sequence combinations on each fold are determined for each topol-

ogy. Maximum training classification accuracy is achieved during the training using

these hyper-parameters and initial parameter sets for each optimizer, objective func-

tion, activation function, and λ sequence combinations on each fold is computed for

each topology. Average of these training classification accuracies is computed over

each fold for each optimizer, objective function, activation function, λ sequence, and

topology. Maximal average training performance achieved by each topology is com-

81



puted as maximum among average training classification accuracy computed for each

optimizer, objective function, activation function, and λ sequence for that topology.

Average test accuracies presented in tables are calculated using different trials from

each fold. Hyper-parameters achieving training classification accuracy for each opti-

mizer, objective function, activation function, and λ sequence combinations on each

fold which is not less than 0.99 times the maximum training classification accu-

racy achieved by these combinations determined for each topology. Test accuracy

at the iteration which achieves maximum training classification accuracy, for each of

these hyper-parameters, optimizer, activation function, λ sequence, fold, and topol-

ogy combinations computed. If there are more than one such iterations, then the

iteration achieving the smallest training loss is used. Average of these test accuracies

is presented for each optimizer, objective function, activation function, λ sequence,

and topology combination.

Each subsubsection also contains a figure presenting the change of objective function

with respect to iterations for selected optimizer, objective function, activation func-

tion, topology and λ sequence combination. The change of objective function with

respect to iterations is given for the trials which are used for calculation of average

test accuracy.

Finally, each subsection contains a comparison between average classification perfor-

mances achieved by classic feed-forward neural networks (FNN) and average classi-

fication performances achieved by EFNNs. These comparison is done using network

topologies selected for comparison of BLS and standard backpropagation algorithm,

applied to EFNNs. FNNs are trained using activation functions, objective functions

and optimizers used when BLS and standard backpropagation algorithm compared.

Average classification performances achieved by EFNNs are calculated using net-

works trained with standard backpropagation algorithm and BLS algorithm.

82



5.3.3.1 Abalone Data Set

Table 5.21 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on abalone

data set. FNNs trained using only standard backpropagation algorithm, while EFNNs

trained with backpropagation with line search (BLS) with different λ sequences in

addition to standard backpropagation algorithm. The average classification accuracy

presented on table 5.21 for different network topology, optimizer, and objective func-

tion triplets for EFNNs calculated using results of both standard backpropagation al-

gorithm and BLS algorithm. The table 5.21 contains two different network topologies

which are 2 hidden layers each of which contains 100 neurons and 3 hidden layers

each of which contains 100 neurons.

Table 5.21: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on abalone data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 17.2 ˘ 0.8 23.1 ˘ 0.9 17.2 ˘ 0.8 23.0 ˘ 3.0

EFNN 23.0 ˘ 1.0 24.8 ˘ 1.8 18.0 ˘ 1.6 27.3 ˘ 2.3

2 hidden layers
100 neurons

ReLU

FNN 17.8 ˘ 0.8 25.3 ˘ 1.5 17.9 ˘ 0.7 23.7 ˘ 2.9

EFNN 20.9 ˘ 0.5 25.4 ˘ 2.9 19.4 ˘ 1.8 27.2 ˘ 1.2

3 hidden layers
100 neurons

Identity

FNN 19.7 ˘ 2.0 23.0 ˘ 1.7 20.0 ˘ 1.8 20.8 ˘ 1.5

EFNN 25.1 ˘ 2.0 26.8 ˘ 1.8 25.2 ˘ 2.1 26.4 ˘ 2.4

3 hidden layers
100 neurons

ReLU

FNN 20.2 ˘ 1.3 26.6 ˘ 1.9 20.1 ˘ 1.2 24.4 ˘ 2.2

EFNN 24.6 ˘ 1.5 24.8 ˘ 1.4 25.0 ˘ 1.1 27.3 ˘ 1.3

83



Table 5.22: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1` δ2

t where δ “ 10´8 on abalone data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 23.1 ˘ 1.0 25.7 ˘ 1.8 18.0 ˘ 1.6 27.4 ˘ 2.2
1 21.3 ˘ 1.8 25.2 ˘ 1.4 18.0 ˘ 1.6 27.0 ˘ 1.6

1` δ2
t 21.3 ˘ 1.8 25.2 ˘ 1.5 18.0 ˘ 1.6 26.7 ˘ 1.5

2 23.1 ˘ 1.0 25.9 ˘ 1.5 18.0 ˘ 1.6 27.9 ˘ 2.0
10 23.1 ˘ 1.0 25.6 ˘ 1.5 18.0 ˘ 1.6 27.2 ˘ 2.2
100 23.1 ˘ 1.0 26.2 ˘ 1.8 18.0 ˘ 1.6 27.8 ˘ 2.2

2 hidden layers
100 neurons

ReLU

8 21.1 ˘ 0.8 26.9 ˘ 2.2 18.9 ˘ 2.1 27.0 ˘ 1.6
1 18.9 ˘ 2.0 26.3 ˘ 2.1 18.7 ˘ 1.7 26.9 ˘ 1.5

1` δ2
t 19.4 ˘ 2.3 26.6 ˘ 2.4 18.4 ˘ 1.2 27.2 ˘ 1.7

2 20.4 ˘ 0.7 27.1 ˘ 1.9 18.7 ˘ 1.5 26.6 ˘ 1.6
10 21.7 ˘ 1.9 27.1 ˘ 1.7 18.6 ˘ 1.4 26.9 ˘ 1.4
100 20.9 ˘ 1.8 26.2 ˘ 2.6 19.0 ˘ 1.8 26.9 ˘ 1.4

3 hidden layers
100 neurons

Identity

8 24.9 ˘ 1.3 25.9 ˘ 1.9 25.3 ˘ 2.2 26.7 ˘ 2.0
1 21.5 ˘ 2.6 20.9 ˘ 2.2 25.2 ˘ 2.2 27.1 ˘ 2.2

1` δ2
t 21.1 ˘ 3.0 23.5 ˘ 2.2 25.1 ˘ 2.3 26.0 ˘ 2.0

2 24.9 ˘ 2.2 26.7 ˘ 1.8 25.2 ˘ 2.0 26.3 ˘ 1.6
10 25.5 ˘ 1.6 26.7 ˘ 1.9 25.2 ˘ 2.0 26.5 ˘ 2.1
100 25.3 ˘ 1.9 25.0 ˘ 2.4 25.2 ˘ 2.0 26.4 ˘ 1.5

3 hidden layers
100 neurons

ReLU

8 24.8 ˘ 1.6 25.0 ˘ 2.2 24.2 ˘ 1.5 27.1 ˘ 1.9
1 23.3 ˘ 1.9 25.0 ˘ 2.6 23.1 ˘ 1.7 26.7 ˘ 1.6

1` δ2
t 23.2 ˘ 0.8 25.0 ˘ 2.8 23.1 ˘ 1.7 26.5 ˘ 1.6

2 24.3 ˘ 1.5 24.8 ˘ 1.4 24.1 ˘ 1.4 27.3 ˘ 1.4
10 24.9 ˘ 1.6 24.8 ˘ 1.4 23.8 ˘ 1.4 27.3 ˘ 1.4
100 25.1 ˘ 1.4 24.8 ˘ 1.4 24.2 ˘ 1.4 27.3 ˘ 1.4

In addition to Table 5.21, Table 5.22 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

and BLS algorithm using different λ sequences. Average classification performances

84



computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

SGD optimization methods. The network topologies presented in Table 5.22 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 100 neurons, similar to Table 5.21.

Table 5.23: The number of different hyper-parameter sets used on trials given in
Figure 5.3

λt µ Mini Batch Count Trial Count

8 10´4
1 5
4 2

1 10´4 4 7

1` δ2
t

10´4 4 7

2 10´4
1 4
4 3

10 10´4
1 4
4 3

100 10´4
1 4
4 3

Lastly, Figure 5.3 and Table 5.23 presented. Figure 5.3 shows the change of av-

erage cross entropy with respect to iterations, when the training trials are done with

standard backpropagation algorithm and BLS algorithm with different λ sequences to

train EFNNs with network topology consisting 3 hidden layers each of which contains

100 many neurons, and ReLU activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.22. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.3 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.23 instead

of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

85



Figure 5.3: The change of average cross entropy with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 3 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with ReLU activation function over abalone data set.

86



5.3.3.2 Connectionist Bench Data Set

Table 5.24 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on connec-

tionist bench data set. FNNs trained using only standard backpropagation algorithm,

while EFNNs trained with backpropagation with line search (BLS) with different λ

sequences in addition to standard backpropagation algorithm. The average classi-

fication accuracy presented on table 5.24 for different network topology, optimizer,

and objective function triplets for EFNNs calculated using results of both standard

backpropagation algorithm and BLS algorithm. The table 5.24 contains two different

network topologies which are 2 hidden layers each of which contains 100 neurons

and 3 hidden layers each of which contains 100 neurons.

Table 5.24: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on connectionist bench data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 14.7 ˘ 0.0 32.1 ˘ 0.7 14.3 ˘ 0.0 47.3 ˘ 0.1

EFNN 29.0 ˘ 0.0 40.7 ˘ 0.0 18.4 ˘ 0.3 45.0 ˘ 0.4

2 hidden layers
100 neurons

ReLU

FNN 15.4 ˘ 0.0 55.2 ˘ 0.5 13.2 ˘ 0.0 50.4 ˘ 0.0

EFNN 24.2 ˘ 0.0 51.5 ˘ 1.0 11.5 ˘ 0.0 52.7 ˘ 1.2

3 hidden layers
100 neurons

Identity

FNN 13.9 ˘ 0.0 31.0 ˘ 1.7 11.3 ˘ 0.0 47.2 ˘ 1.1

EFNN 39.3 ˘ 2.3 45.0 ˘ 0.0 39.0 ˘ 0.2 35.5 ˘ 0.0

3 hidden layers
100 neurons

ReLU

FNN 13.6 ˘ 0.2 58.7 ˘ 0.0 12.3 ˘ 0.0 51.3 ˘ 0.4

EFNN 36.1 ˘ 1.0 48.6 ˘ 3.0 33.3 ˘ 1.1 56.0 ˘ 3.1

87



Table 5.25: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on vowel data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 29.0 ˘ 0.0 37.0 ˘ 1.7 18.4 ˘ 0.3 44.4 ˘ 0.0
1 18.2 ˘ 0.0 25.8 ˘ 0.0 13.2 ˘ 0.0 41.8 ˘ 0.0

1` δ2
t 18.2 ˘ 0.0 31.0 ˘ 0.0 13.2 ˘ 0.0 41.8 ˘ 0.0

2 29.0 ˘ 0.0 33.8 ˘ 0.0 18.4 ˘ 0.3 45.2 ˘ 0.0
10 29.0 ˘ 0.0 33.8 ˘ 0.0 18.4 ˘ 0.3 45.2 ˘ 0.0
100 29.0 ˘ 0.0 40.7 ˘ 0.0 18.4 ˘ 0.3 45.2 ˘ 0.0

2 hidden layers
100 neurons

ReLU

8 24.2 ˘ 0.0 54.3 ˘ 0.0 11.5 ˘ 0.0 52.5 ˘ 1.5
1 17.5 ˘ 0.0 37.7 ˘ 0.0 10.6 ˘ 0.0 35.1 ˘ 0.0

1` δ2
t 13.2 ˘ 0.0 27.9 ˘ 0.0 10.6 ˘ 0.0 35.1 ˘ 0.0

2 24.0 ˘ 0.0 50.6 ˘ 0.9 11.9 ˘ 0.0 53.3 ˘ 0.9
10 27.1 ˘ 0.0 50.6 ˘ 0.9 11.9 ˘ 0.0 52.2 ˘ 0.7
100 24.0 ˘ 0.0 50.6 ˘ 1.0 11.9 ˘ 0.0 52.8 ˘ 1.0

3 hidden layers
100 neurons

Identity

8 41.1 ˘ 1.0 36.6 ˘ 3.3 39.0 ˘ 0.2 35.5 ˘ 0.0
1 20.8 ˘ 0.0 19.0 ˘ 0.0 36.6 ˘ 0.0 30.5 ˘ 0.0

1` δ2
t 25.5 ˘ 0.0 25.5 ˘ 0.0 36.6 ˘ 0.0 31.0 ˘ 0.0

2 36.4 ˘ 0.0 45.0 ˘ 0.0 39.0 ˘ 0.2 39.0 ˘ 4.2
10 39.4 ˘ 2.1 45.0 ˘ 0.0 39.0 ˘ 0.2 39.0 ˘ 3.2
100 39.4 ˘ 2.1 45.0 ˘ 0.0 39.0 ˘ 0.2 37.7 ˘ 3.7

3 hidden layers
100 neurons

ReLU

8 34.6 ˘ 0.0 48.7 ˘ 2.3 33.8 ˘ 0.1 55.9 ˘ 2.9
1 24.2 ˘ 0.0 29.2 ˘ 0.0 18.7 ˘ 1.8 34.2 ˘ 0.0

1` δ2
t 24.2 ˘ 0.0 28.4 ˘ 0.0 18.1 ˘ 1.7 34.2 ˘ 0.0

2 36.8 ˘ 0.0 48.6 ˘ 3.2 33.3 ˘ 1.2 56.4 ˘ 2.6
10 36.8 ˘ 0.0 47.8 ˘ 3.4 33.3 ˘ 1.2 55.8 ˘ 3.2
100 40.2 ˘ 1.2 49.4 ˘ 2.6 33.0 ˘ 1.3 56.8 ˘ 3.0

In addition to Table 5.24, Table 5.25 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

88



and BLS algorithm using different λ sequences. Average classification performances

computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

SGD optimization methods. The network topologies presented in Table 5.25 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 100 neurons, similar to Table 5.24.

Table 5.26: The number of different hyper-parameter sets used on trials given in
Figure 5.4

λt µ Mini Batch Count Trial Count

8 10´4
1 5
4 5

1 10´4
1 1
4 1

1` δ2
t

10´4 1 1

2 10´4
1 4
4 3

10 10´4
1 3
4 4

100 10´4
1 2
4 3

Lastly, Figure 5.4 and Table 5.26 presented. Figure 5.4 shows the change of av-

erage cross entropy with respect to iterations, when the training trials are done with

standard backpropagation algorithm and BLS algorithm with different λ sequences to

train EFNNs with network topology consisting 3 hidden layers each of which contains

100 many neurons, and ReLU activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.25. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.4 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.26 instead

89



of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

Figure 5.4: The change of average cross entropy with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 3 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with ReLU activation function over connectionist bench data set.

90



5.3.3.3 Ecoli Data Set

Table 5.27 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on ecoli data

set. FNNs trained using only standard backpropagation algorithm, while EFNNs

trained with backpropagation with line search (BLS) with different λ sequences in

addition to standard backpropagation algorithm. The average classification accuracy

presented on table 5.27 for different network topology, optimizer, and objective func-

tion triplets for EFNNs calculated using results of both standard backpropagation al-

gorithm and BLS algorithm. The table 5.27 contains two different network topologies

which are 2 hidden layers each of which contains 100 neurons and 3 hidden layers

each of which contains 100 neurons.

Table 5.27: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on ecoli data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 60.1 ˘ 2.0 75.3 ˘ 5.1 58.5 ˘ 3.7 63.1 ˘ 4.9

EFNN 53.3 ˘ 2.6 85.3 ˘ 4.3 52.7 ˘ 2.4 84.4 ˘ 3.5

2 hidden layers
100 neurons

ReLU

FNN 62.8 ˘ 3.0 75.1 ˘ 5.1 62.8 ˘ 3.0 61.6 ˘ 3.7

EFNN 64.2 ˘ 1.2 84.1 ˘ 4.4 64.0 ˘ 1.4 83.7 ˘ 3.9

3 hidden layers
100 neurons

Identity

FNN 53.1 ˘ 2.7 74.3 ˘ 4.7 52.2 ˘ 3.0 61.2 ˘ 2.0

EFNN 85.5 ˘ 4.2 84.0 ˘ 5.0 79.3 ˘ 1.8 82.6 ˘ 4.4

3 hidden layers
100 neurons

ReLU

FNN 64.1 ˘ 1.1 66.6 ˘ 4.2 61.0 ˘ 2.7 60.2 ˘ 3.8

EFNN 79.8 ˘ 3.2 83.0 ˘ 5.0 73.8 ˘ 4.1 84.4 ˘ 3.2

91



Table 5.28: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on ecoli data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 53.2 ˘ 2.7 84.2 ˘ 4.0 52.7 ˘ 2.4 84.5 ˘ 3.7
1 53.9 ˘ 2.1 81.0 ˘ 2.4 52.7 ˘ 2.4 84.8 ˘ 4.4

1` δ2
t 53.9 ˘ 2.1 80.5 ˘ 1.3 52.7 ˘ 2.4 84.0 ˘ 4.2

2 53.2 ˘ 2.7 84.8 ˘ 4.4 52.7 ˘ 2.4 85.0 ˘ 3.5
10 53.2 ˘ 2.7 85.1 ˘ 4.4 52.7 ˘ 2.4 84.9 ˘ 3.5
100 53.2 ˘ 2.7 85.0 ˘ 4.4 52.7 ˘ 2.4 84.8 ˘ 3.4

2 hidden layers
100 neurons

ReLU

8 63.7 ˘ 0.9 83.5 ˘ 4.8 64.1 ˘ 1.4 82.5 ˘ 4.3
1 62.3 ˘ 4.9 72.4 ˘ 4.2 55.7 ˘ 9.4 77.6 ˘ 5.5

1` δ2
t 63.1 ˘ 4.3 73.6 ˘ 5.0 62.3 ˘ 4.5 77.3 ˘ 6.3

2 64.0 ˘ 1.2 84.4 ˘ 3.2 64.0 ˘ 1.4 83.8 ˘ 3.0
10 64.3 ˘ 1.2 83.2 ˘ 5.1 64.0 ˘ 1.4 84.1 ˘ 3.9
100 64.5 ˘ 1.2 84.3 ˘ 3.4 63.9 ˘ 1.3 84.3 ˘ 2.5

3 hidden layers
100 neurons

Identity

8 85.2 ˘ 4.5 82.8 ˘ 4.0 79.3 ˘ 1.8 81.4 ˘ 5.4
1 69.9 ˘ 6.1 81.4 ˘ 2.3 64.0 ˘ 4.9 86.0 ˘ 3.1

1` δ2
t 75.0 ˘ 3.3 83.2 ˘ 2.6 64.0 ˘ 4.9 86.6 ˘ 3.2

2 85.5 ˘ 3.9 84.4 ˘ 5.3 79.3 ˘ 1.8 80.5 ˘ 5.3
10 85.5 ˘ 3.9 84.6 ˘ 4.3 79.3 ˘ 1.8 79.0 ˘ 5.7
100 85.6 ˘ 4.0 84.5 ˘ 4.9 79.3 ˘ 1.8 81.2 ˘ 5.2

3 hidden layers
100 neurons

ReLU

8 80.6 ˘ 3.7 83.1 ˘ 3.4 73.8 ˘ 3.7 82.0 ˘ 3.7
1 58.2 ˘ 4.1 76.9 ˘ 1.2 55.6 ˘ 2.1 75.9 ˘ 2.4

1` δ2
t 60.5 ˘ 3.4 75.5 ˘ 3.4 57.9 ˘ 3.5 76.8 ˘ 1.8

2 79.2 ˘ 2.4 84.4 ˘ 5.0 73.7 ˘ 4.4 83.4 ˘ 4.0
10 79.1 ˘ 3.7 83.8 ˘ 4.3 73.6 ˘ 4.7 83.5 ˘ 3.9
100 79.1 ˘ 2.8 84.4 ˘ 4.4 73.9 ˘ 3.7 83.3 ˘ 4.0

In addition to Table 5.27, Table 5.28 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

and BLS algorithm using different λ sequences. Average classification performances

92



computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

SGD optimization methods. The network topologies presented in Table 5.28 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 100 neurons, similar to Table 5.27.

Table 5.29: The number of different hyper-parameter sets used on trials given in
Figure 5.5

λt µ Mini Batch Count Trial Count

8 10´4
1 17
4 16

1 10´4
1 7
4 5

1` δ2
t

10´4
1 4
4 5

2 10´4
1 23
4 21

10 10´4
1 20
4 21

100 10´4
1 22
4 22

Lastly, Figure 5.5 and Table 5.29 presented. Figure 5.5 shows the change of mean

squared error with respect to iterations, when the training trials are done with standard

backpropagation algorithm and BLS algorithm with different λ sequences to train

EFNNs with network topology consisting 2 hidden layers each of which contains 100

many neurons, and identity activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.28. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.5 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.29 instead

93



of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

Figure 5.5: The change of mean squared error with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 2 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with identity activation function over ecoli data set.

94



5.3.3.4 Glass Identification Data Set

Table 5.30 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on glass iden-

tification data set. FNNs trained using only standard backpropagation algorithm,

while EFNNs trained with backpropagation with line search (BLS) with different

λ sequences in addition to standard backpropagation algorithm. The average classi-

fication accuracy presented on table 5.30 for different network topology, optimizer,

and objective function triplets for EFNNs calculated using results of both standard

backpropagation algorithm and BLS algorithm. The table 5.30 contains two different

network topologies which are 2 hidden layers each of which contains 100 neurons

and 3 hidden layers each of which contains 100 neurons.

Table 5.30: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on glass identification data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 40.8 ˘ 7.9 48.3 ˘ 8.7 42.1 ˘ 7.4 57.7 ˘ 8.2

EFNN 50.8 ˘ 10.2 60.7 ˘ 6.0 47.9 ˘ 10.0 59.6 ˘ 5.0

2 hidden layers
100 neurons

ReLU

FNN 43.6 ˘ 4.7 50.1 ˘ 9.7 48.1 ˘ 2.8 57.1 ˘ 6.3

EFNN 51.0 ˘ 4.0 55.0 ˘ 7.2 42.1 ˘ 11.4 56.4 ˘ 3.8

3 hidden layers
100 neurons

Identity

FNN 36.7 ˘ 2.9 50.2 ˘ 10.3 37.0 ˘ 3.4 58.5 ˘ 7.0

EFNN 44.4 ˘ 5.4 57.5 ˘ 5.8 55.4 ˘ 11.7 60.1 ˘ 7.2

3 hidden layers
100 neurons

ReLU

FNN 37.7 ˘ 8.5 56.2 ˘ 5.1 39.2 ˘ 9.3 56.2 ˘ 7.0

EFNN 55.2 ˘ 7.3 54.8 ˘ 7.7 53.0 ˘ 5.1 59.1 ˘ 5.5

In addition to Table 5.30, Table 5.31 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

95



Table 5.31: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on glass data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 41.0 ˘ 7.3 61.6 ˘ 5.6 46.5 ˘ 9.9 58.5 ˘ 4.6
1 48.0 ˘ 13.1 31.5 ˘ 8.3 47.9 ˘ 9.3 41.8 ˘ 3.8

1` δ2
t 47.8 ˘ 6.6 47.7 ˘ 12.1 47.9 ˘ 9.3 41.8 ˘ 4.8

2 50.7 ˘ 10.1 60.3 ˘ 6.3 46.5 ˘ 9.9 60.8 ˘ 4.8
10 41.0 ˘ 7.3 61.7 ˘ 3.5 46.5 ˘ 9.9 60.7 ˘ 4.7
100 41.0 ˘ 7.3 61.4 ˘ 5.6 46.5 ˘ 9.9 59.1 ˘ 5.0

2 hidden layers
100 neurons

ReLU

8 50.0 ˘ 7.5 57.2 ˘ 7.8 37.6 ˘ 10.6 57.5 ˘ 3.1
1 37.3 ˘ 10.0 40.9 ˘ 8.1 39.2 ˘ 9.7 41.5 ˘ 6.4

1` δ2
t 44.7 ˘ 4.2 43.5 ˘ 3.9 39.4 ˘ 8.2 40.2 ˘ 9.4

2 48.9 ˘ 5.9 55.4 ˘ 8.3 39.8 ˘ 9.1 55.7 ˘ 3.6
10 50.3 ˘ 3.5 55.4 ˘ 6.4 37.6 ˘ 8.8 56.4 ˘ 3.9
100 53.7 ˘ 4.1 59.0 ˘ 8.6 39.8 ˘ 9.1 58.6 ˘ 4.1

3 hidden layers
100 neurons

Identity

8 34.4 ˘ 9.5 54.5 ˘ 6.3 52.3 ˘ 12.9 59.7 ˘ 7.9
1 31.1 ˘ 9.0 38.9 ˘ 6.8 48.0 ˘ 7.9 43.6 ˘ 3.8

1` δ2
t 44.6 ˘ 4.8 39.3 ˘ 6.7 47.9 ˘ 2.4 50.1 ˘ 9.3

2 43.9 ˘ 6.1 44.6 ˘ 7.9 55.8 ˘ 13.5 58.8 ˘ 3.2
10 35.0 ˘ 11.0 55.7 ˘ 6.1 58.9 ˘ 10.3 60.3 ˘ 5.6
100 34.4 ˘ 9.5 57.9 ˘ 5.8 56.3 ˘ 12.3 62.8 ˘ 6.7

3 hidden layers
100 neurons

ReLU

8 47.8 ˘ 14.6 55.6 ˘ 7.1 52.8 ˘ 4.9 59.0 ˘ 6.7
1 39.2 ˘ 9.1 37.9 ˘ 8.3 46.2 ˘ 11.9 45.7 ˘ 5.2

1` δ2
t 47.6 ˘ 17.2 41.2 ˘ 7.2 47.1 ˘ 11.9 43.4 ˘ 5.4

2 55.2 ˘ 7.3 49.8 ˘ 16.7 58.3 ˘ 5.8 59.1 ˘ 3.3
10 48.3 ˘ 15.6 56.1 ˘ 8.1 54.1 ˘ 5.7 57.8 ˘ 4.7
100 47.9 ˘ 14.9 55.5 ˘ 10.1 55.3 ˘ 5.7 57.4 ˘ 4.3

and BLS algorithm using different λ sequences. Average classification performances

computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

96



SGD optimization methods. The network topologies presented in Table 5.31 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 100 neurons, similar to Table 5.30.

Table 5.32: The number of different hyper-parameter sets used on trials given in
Figure 5.6

λt µ Mini Batch Count Trial Count

8 10´4
1 6
4 4

1

10´4
1 3
4 3

10´6
1 2
4 2

1` δ2
t

10´4
1 4
4 5

2 10´4
1 8
4 3

10 10´4
1 3
4 5

100 10´4
1 4
4 5

Lastly, Figure 5.6 and Table 5.32 presented. Figure 5.6 shows the change of mean

squared error with respect to iterations, when the training trials are done with standard

backpropagation algorithm and BLS algorithm with different λ sequences to train

EFNNs with network topology consisting 2 hidden layers each of which contains 100

many neurons, and identity activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.31. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.6 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.32 instead

97



of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

Figure 5.6: The change of mean squared error with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 2 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with identity activation function over glass identification data set.

98



5.3.3.5 Iris Data Set

Table 5.33 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on iris data

set. FNNs trained using only standard backpropagation algorithm, while EFNNs

trained with backpropagation with line search (BLS) with different λ sequences in

addition to standard backpropagation algorithm. The average classification accuracy

presented on table 5.33 for different network topology, optimizer, and objective func-

tion triplets for EFNNs calculated using results of both standard backpropagation

algorithm and BLS algorithm. The table 5.33 contains two different network topolo-

gies which are 2 hidden layers each of which contains 50 neurons and 3 hidden layers

each of which contains 100 neurons.

Table 5.33: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 50 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on iris data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
50 neurons

Identity

FNN 90.0 ˘ 6.3 67.6 ˘ 8.5 54.7 ˘ 4.5 97.6 ˘ 2.2

EFNN 94.3 ˘ 3.2 94.0 ˘ 5.1 90.0 ˘ 4.7 96.9 ˘ 3.5

2 hidden layers
50 neurons

ReLU

FNN 78.0 ˘ 7.5 94.4 ˘ 4.2 66.3 ˘ 1.0 95.2 ˘ 3.3

EFNN 93.3 ˘ 3.3 96.7 ˘ 3.8 94.7 ˘ 3.8 96.9 ˘ 3.3

3 hidden layers
100 neurons

Identity

FNN 65.5 ˘ 1.6 66.6 ˘ 0.5 66.7 ˘ 0.0 96.8 ˘ 3.1

EFNN 91.2 ˘ 4.9 95.5 ˘ 4.3 97.3 ˘ 3.1 96.0 ˘ 4.0

3 hidden layers
100 neurons

ReLU

FNN 65.9 ˘ 1.4 97.1 ˘ 3.1 65.3 ˘ 2.7 96.9 ˘ 3.1

EFNN 97.5 ˘ 3.4 96.6 ˘ 3.6 97.3 ˘ 3.3 97.4 ˘ 3.2

99



Table 5.34: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with expo-
nentially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on iris data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 50 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
50 neurons

Identity

8 94.3 ˘ 3.2 94.1 ˘ 4.9 90.0 ˘ 4.7 96.9 ˘ 3.6
1 67.1 ˘ 5.5 84.0 ˘ 9.8 80.0 ˘ 7.0 88.1 ˘ 4.7

1` δ2
t 67.1 ˘ 5.5 91.6 ˘ 4.1 80.0 ˘ 7.0 94.7 ˘ 4.0

2 94.3 ˘ 3.2 94.0 ˘ 5.2 90.0 ˘ 4.7 96.9 ˘ 3.6
10 94.3 ˘ 3.2 94.0 ˘ 5.2 90.0 ˘ 4.7 96.9 ˘ 3.5
100 94.3 ˘ 3.2 94.1 ˘ 5.2 90.0 ˘ 4.7 96.9 ˘ 3.6

2 hidden layers
50 neurons

ReLU

8 93.1 ˘ 3.8 96.8 ˘ 3.8 94.0 ˘ 3.7 97.1 ˘ 3.2
1 89.2 ˘ 6.0 90.3 ˘ 3.5 66.5 ˘ 0.8 92.8 ˘ 4.0

1` δ2
t 83.9 ˘ 7.0 91.1 ˘ 1.6 90.4 ˘ 6.2 93.0 ˘ 2.5

2 92.9 ˘ 4.2 96.8 ˘ 3.9 94.9 ˘ 3.8 97.0 ˘ 3.1
10 94.6 ˘ 4.4 96.7 ˘ 3.6 96.3 ˘ 3.1 96.9 ˘ 3.4
100 93.1 ˘ 3.7 96.8 ˘ 3.6 94.2 ˘ 3.9 96.9 ˘ 3.5

3 hidden layers
100 neurons

Identity

8 78.1 ˘ 6.1 95.3 ˘ 4.3 97.4 ˘ 3.0 95.8 ˘ 4.1
1 80.0 ˘ 7.9 84.0 ˘ 6.8 96.7 ˘ 3.3 96.2 ˘ 3.6

1` δ2
t 87.2 ˘ 5.9 95.5 ˘ 3.6 96.1 ˘ 3.6 94.7 ˘ 4.7

2 91.2 ˘ 4.9 96.0 ˘ 4.5 97.4 ˘ 3.0 95.9 ˘ 4.2
10 78.1 ˘ 6.1 95.5 ˘ 4.2 97.4 ˘ 3.0 95.9 ˘ 4.0
100 78.1 ˘ 6.1 95.6 ˘ 4.1 97.4 ˘ 3.0 96.0 ˘ 4.0

3 hidden layers
100 neurons

ReLU

8 97.5 ˘ 3.4 96.9 ˘ 3.4 97.8 ˘ 2.8 97.4 ˘ 3.3
1 96.2 ˘ 3.1 92.1 ˘ 4.5 95.2 ˘ 4.8 95.7 ˘ 4.4

1` δ2
t 94.4 ˘ 3.8 95.8 ˘ 3.5 96.2 ˘ 3.9 95.3 ˘ 3.7

2 97.5 ˘ 3.3 96.6 ˘ 3.4 97.1 ˘ 3.6 97.8 ˘ 3.1
10 97.4 ˘ 3.4 96.7 ˘ 4.0 97.0 ˘ 3.5 97.5 ˘ 3.0
100 97.3 ˘ 3.5 96.7 ˘ 3.7 97.3 ˘ 3.4 97.7 ˘ 3.0

In addition to Table 5.33, Table 5.34 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

and BLS algorithm using different λ sequences. Average classification performances

100



computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

SGD optimization methods. The network topologies presented in Table 5.34 are 2

hidden layers each of which containing 50 neurons and 3 hidden layers each of which

contains 100 neurons, similar to Table 5.33.

Lastly, Figure 5.7 and Table 5.35 presented. Figure 5.7 shows the change of mean

squared error with respect to iterations, when the training trials are done with stan-

dard backpropagation algorithm and BLS algorithm with different λ sequences to

train EFNNs with network topology consisting 3 hidden layers each of which contains

100 many neurons, and ReLU activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.34. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.7 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.35 instead

of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

101



Table 5.35: The number of different hyper-parameter sets used on trials given in
Figure 5.7

λt µ Mini Batch Count Trial Count

8

10´4
1 37
4 36

10´6
1 1
4 1

1 10´4
1 7
4 7

1` δ2
t

10´4
1 6
4 9

2

10´4
1 36
4 33

10´6
1 2
4 1

10

10´4
1 36
4 35

10´6
1 2
4 1

100

10´4
1 36
4 35

10´6
1 1
4 1

102



Figure 5.7: The change of mean squared error with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 3 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with ReLU activation function over iris data set.

103



5.3.3.6 Leaf Data Set

Table 5.36 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on leaf data

set. FNNs trained using only standard backpropagation algorithm, while EFNNs

trained with backpropagation with line search (BLS) with different λ sequences in

addition to standard backpropagation algorithm. The average classification accuracy

presented on table 5.36 for different network topology, optimizer, and objective func-

tion triplets for EFNNs calculated using results of both standard backpropagation al-

gorithm and BLS algorithm. The table 5.36 contains two different network topologies

which are 2 hidden layers each of which contains 100 neurons and 3 hidden layers

each of which contains 100 neurons.

Table 5.36: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on leaf data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 10.0 ˘ 2.0 32.2 ˘ 4.8 11.0 ˘ 0.8 48.0 ˘ 4.3

EFNN 21.9 ˘ 3.9 58.8 ˘ 3.1 14.2 ˘ 1.4 64.1 ˘ 4.6

2 hidden layers
100 neurons

ReLU

FNN 11.8 ˘ 0.4 51.6 ˘ 4.4 11.9 ˘ 0.7 46.8 ˘ 2.7

EFNN 19.2 ˘ 3.5 58.4 ˘ 4.8 9.5 ˘ 1.4 60.5 ˘ 6.1

3 hidden layers
100 neurons

Identity

FNN 8.0 ˘ 0.6 29.6 ˘ 2.5 8.0 ˘ 0.6 46.1 ˘ 5.7

EFNN 50.7 ˘ 3.4 58.3 ˘ 4.4 45.6 ˘ 2.4 71.0 ˘ 5.2

3 hidden layers
100 neurons

ReLU

FNN 8.4 ˘ 1.1 54.3 ˘ 3.2 9.0 ˘ 1.8 46.0 ˘ 5.8

EFNN 42.5 ˘ 3.3 61.3 ˘ 3.9 27.6 ˘ 2.4 64.2 ˘ 3.5

104



Table 5.37: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with expo-
nentially decaying λ, λt “ 1` δ2

t where δ “ 10´8 on leaf data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 21.9 ˘ 3.9 59.1 ˘ 3.3 14.0 ˘ 1.4 63.1 ˘ 4.6
1 13.0 ˘ 2.0 32.4 ˘ 3.0 13.9 ˘ 2.4 58.7 ˘ 4.3

1` δ2
t 13.0 ˘ 2.0 33.0 ˘ 2.6 13.9 ˘ 2.4 59.3 ˘ 5.3

2 21.9 ˘ 3.9 58.8 ˘ 2.8 14.0 ˘ 1.4 64.5 ˘ 4.8
10 21.9 ˘ 3.9 60.3 ˘ 2.4 14.0 ˘ 1.4 63.5 ˘ 5.6
100 21.9 ˘ 3.9 60.1 ˘ 2.2 14.0 ˘ 1.4 63.1 ˘ 5.5

2 hidden layers
100 neurons

ReLU

8 17.4 ˘ 1.7 59.5 ˘ 3.4 9.4 ˘ 1.4 64.6 ˘ 3.4
1 11.2 ˘ 3.6 29.0 ˘ 5.1 8.8 ˘ 2.1 47.9 ˘ 4.2

1` δ2
t 10.3 ˘ 2.9 28.8 ˘ 4.8 9.5 ˘ 2.7 47.5 ˘ 2.3

2 19.9 ˘ 3.2 59.7 ˘ 4.6 9.4 ˘ 1.0 63.7 ˘ 6.5
10 19.1 ˘ 2.7 58.8 ˘ 4.6 9.8 ˘ 1.4 63.4 ˘ 6.6
100 18.3 ˘ 3.9 58.9 ˘ 4.5 9.9 ˘ 1.3 64.1 ˘ 6.6

3 hidden layers
100 neurons

Identity

8 50.1 ˘ 3.3 60.6 ˘ 5.2 45.6 ˘ 2.4 70.1 ˘ 4.6
1 12.0 ˘ 2.1 16.4 ˘ 2.8 35.8 ˘ 3.0 63.5 ˘ 3.6

1` δ2
t 20.3 ˘ 2.9 15.5 ˘ 3.2 35.8 ˘ 3.0 62.0 ˘ 4.0

2 48.1 ˘ 5.7 57.0 ˘ 4.4 45.6 ˘ 2.4 72.2 ˘ 4.6
10 48.3 ˘ 3.7 56.8 ˘ 4.2 45.6 ˘ 2.4 71.8 ˘ 4.4
100 49.3 ˘ 6.3 58.2 ˘ 2.9 45.6 ˘ 2.4 71.1 ˘ 5.6

3 hidden layers
100 neurons

ReLU

8 42.8 ˘ 3.3 62.2 ˘ 5.2 26.6 ˘ 2.7 63.3 ˘ 4.1
1 10.3 ˘ 2.7 22.2 ˘ 3.3 13.1 ˘ 4.7 48.2 ˘ 3.7

1` δ2
t 14.9 ˘ 1.4 19.9 ˘ 3.8 12.2 ˘ 4.2 48.2 ˘ 2.9

2 41.1 ˘ 3.6 61.8 ˘ 3.6 25.9 ˘ 1.4 64.0 ˘ 3.7
10 39.8 ˘ 3.8 61.4 ˘ 3.5 26.5 ˘ 2.4 64.3 ˘ 3.5
100 41.1 ˘ 3.6 61.2 ˘ 3.6 26.5 ˘ 2.4 64.9 ˘ 3.2

In addition to Table 5.36, Table 5.37 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

and BLS algorithm using different λ sequences. Average classification performances

105



computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

SGD optimization methods. The network topologies presented in Table 5.37 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 100 neurons, similar to Table 5.36.

Table 5.38: The number of different hyper-parameter sets used on trials given in
Figure 5.8

λt µ Mini Batch Count Trial Count

8 10´4
1 8
4 11

1 10´4
1 8
4 9

1` δ2
t

10´4
1 9
4 8

2 10´4
1 17
4 17

10 10´4
1 17
4 16

100 10´4
1 9
4 9

Lastly, Figure 5.8 and Table 5.38 presented. Figure 5.8 shows the change of average

cross entropy with respect to iterations, when the training trials are done with standard

backpropagation algorithm and BLS algorithm with different λ sequences to train

EFNNs with network topology consisting 3 hidden layers each of which contains 100

many neurons, and identity activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.37. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.8 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.38 instead

106



of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

Figure 5.8: The change of average cross entropy with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 3 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with identity activation function over leaf data set.

107



5.3.3.7 Letter Recognition Data Set

Table 5.39 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on letter recog-

nition data set. FNNs trained using only standard backpropagation algorithm, while

EFNNs trained with backpropagation with line search (BLS) with different λ se-

quences in addition to standard backpropagation algorithm. The average classifica-

tion accuracy presented on table 5.39 for different network topology, optimizer, and

objective function triplets for EFNNs calculated using results of both standard back-

propagation algorithm and BLS algorithm. The table 5.39 contains two different

network topologies which are 2 hidden layers each of which contains 100 neurons

and 3 hidden layers each of which contains 100 neurons.

Table 5.39: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on letter recognition data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 7.7 ˘ 0.3 55.7 ˘ 0.7 6.8 ˘ 0.8 72.1 ˘ 1.8

EFNN 54.2 ˘ 3.4 66.2 ˘ 1.2 72.5 ˘ 1.0 80.1 ˘ 1.0

2 hidden layers
100 neurons

ReLU

FNN 7.7 ˘ 1.3 79.5 ˘ 2.0 6.8 ˘ 0.6 71.1 ˘ 2.4

EFNN 66.8 ˘ 2.5 79.0 ˘ 0.6 70.6 ˘ 1.0 83.3 ˘ 1.1

3 hidden layers
100 neurons

Identity

FNN 6.0 ˘ 0.4 55.4 ˘ 0.8 6.0 ˘ 0.5 69.5 ˘ 3.0

EFNN 51.0 ˘ 6.1 64.6 ˘ 1.3 76.2 ˘ 1.1 80.4 ˘ 0.8

3 hidden layers
100 neurons

ReLU

FNN 6.5 ˘ 0.3 79.0 ˘ 1.8 6.4 ˘ 0.2 68.6 ˘ 2.6

EFNN 56.7 ˘ 3.9 77.1 ˘ 1.2 84.5 ˘ 1.2 89.6 ˘ 0.8

108



Table 5.40: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on letter data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 54.4 ˘ 3.6 66.1 ˘ 1.6 72.6 ˘ 1.0 80.2 ˘ 0.8
1 49.1 ˘ 4.2 30.3 ˘ 8.2 72.5 ˘ 1.0 79.8 ˘ 0.8

1` δ2
t 49.1 ˘ 3.8 50.4 ˘ 1.6 72.5 ˘ 1.0 79.7 ˘ 0.9

2 54.3 ˘ 3.4 66.4 ˘ 1.7 72.6 ˘ 0.9 80.0 ˘ 1.1
10 54.6 ˘ 3.3 66.8 ˘ 1.3 72.6 ˘ 0.9 80.0 ˘ 1.1
100 54.3 ˘ 3.4 66.7 ˘ 1.2 72.6 ˘ 0.9 80.0 ˘ 1.1

2 hidden layers
100 neurons

ReLU

8 66.6 ˘ 2.4 78.0 ˘ 1.2 70.8 ˘ 0.8 83.4 ˘ 0.7
1 55.9 ˘ 4.1 29.7 ˘ 9.4 68.8 ˘ 0.9 77.5 ˘ 1.5

1` δ2
t 55.9 ˘ 1.9 59.6 ˘ 8.4 68.7 ˘ 0.9 77.4 ˘ 2.5

2 66.5 ˘ 2.4 79.0 ˘ 0.6 70.5 ˘ 1.0 83.5 ˘ 0.9
10 67.2 ˘ 2.2 78.8 ˘ 0.6 70.5 ˘ 1.0 83.2 ˘ 1.0
100 66.8 ˘ 2.5 78.9 ˘ 0.5 70.5 ˘ 1.0 83.2 ˘ 0.9

3 hidden layers
100 neurons

Identity

8 42.3 ˘ 2.8 63.2 ˘ 1.7 76.3 ˘ 1.1 80.3 ˘ 0.8
1 12.1 ˘ 2.0 11.3 ˘ 1.3 76.1 ˘ 1.1 78.4 ˘ 2.6

1` δ2
t 31.5 ˘ 4.4 12.7 ˘ 0.9 76.2 ˘ 1.1 80.0 ˘ 0.8

2 51.0 ˘ 6.1 64.6 ˘ 1.1 76.1 ˘ 1.2 80.4 ˘ 0.8
10 42.5 ˘ 2.8 64.1 ˘ 1.5 76.1 ˘ 1.2 80.2 ˘ 0.9
100 42.6 ˘ 2.9 64.0 ˘ 1.4 76.1 ˘ 1.2 80.3 ˘ 0.9

3 hidden layers
100 neurons

ReLU

8 26.9 ˘ 1.8 77.5 ˘ 1.2 84.6 ˘ 1.1 89.5 ˘ 0.7
1 27.9 ˘ 8.6 9.1 ˘ 0.3 75.3 ˘ 4.3 83.3 ˘ 5.6

1` δ2
t 22.6 ˘ 8.6 15.4 ˘ 1.7 73.9 ˘ 5.7 86.1 ˘ 2.0

2 56.7 ˘ 3.9 75.6 ˘ 2.2 84.4 ˘ 1.1 89.3 ˘ 0.8
10 26.6 ˘ 1.6 75.0 ˘ 1.9 84.5 ˘ 1.1 89.3 ˘ 0.9
100 26.2 ˘ 1.3 75.2 ˘ 2.1 84.6 ˘ 1.2 89.5 ˘ 0.8

In addition to Table 5.39, Table 5.40 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

and BLS algorithm using different λ sequences. Average classification performances

109



computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

SGD optimization methods. The network topologies presented in Table 5.40 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 100 neurons, similar to Table 5.39.

Table 5.41: The number of different hyper-parameter sets used on trials given in
Figure 5.9

λt µ Mini Batch Count Trial Count

8 10´4 4 31

1 10´4 4 8

1` δ2
t

10´4 4 12

2 10´4 4 22

10 10´4 4 23

100 10´4 4 24

Lastly, Figure 5.9 and Table 5.41 presented. Figure 5.9 shows the change of av-

erage cross entropy with respect to iterations, when the training trials are done with

standard backpropagation algorithm and BLS algorithm with different λ sequences to

train EFNNs with network topology consisting 3 hidden layers each of which contains

100 many neurons, and ReLU activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.40. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.9 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.41 instead

of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

110



Figure 5.9: The change of average cross entropy with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 3 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with ReLU activation function over letter recognition data set.

111



5.3.3.8 Wine Data Set

Table 5.42 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on wine data

set. FNNs trained using only standard backpropagation algorithm, while EFNNs

trained with backpropagation with line search (BLS) with different λ sequences in

addition to standard backpropagation algorithm. The average classification accuracy

presented on table 5.42 for different network topology, optimizer, and objective func-

tion triplets for EFNNs calculated using results of both standard backpropagation al-

gorithm and BLS algorithm. The table 5.42 contains two different network topologies

which are 2 hidden layers each of which contains 100 neurons and 3 hidden layers

each of which contains 50 neurons.

Table 5.42: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 50 many neurons employing identity and
ReLU activation functions trained on wine data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 66.9 ˘ 4.4 95.5 ˘ 3.3 65.8 ˘ 3.5 93.8 ˘ 4.4

EFNN 67.2 ˘ 7.9 90.4 ˘ 5.7 82.8 ˘ 8.0 90.7 ˘ 5.2

2 hidden layers
100 neurons

ReLU

FNN 66.1 ˘ 6.0 92.2 ˘ 4.1 63.4 ˘ 6.7 92.4 ˘ 4.7

EFNN 72.1 ˘ 8.6 89.3 ˘ 6.0 75.8 ˘ 6.3 89.2 ˘ 5.9

3 hidden layers
50 neurons

Identity

FNN 61.8 ˘ 6.6 93.4 ˘ 3.9 52.8 ˘ 1.9 93.1 ˘ 4.4

EFNN 65.3 ˘ 12.8 65.1 ˘ 6.2 67.8 ˘ 11.4 89.1 ˘ 5.0

3 hidden layers
50 neurons

ReLU

FNN 64.3 ˘ 6.0 92.5 ˘ 4.3 61.9 ˘ 7.0 90.9 ˘ 7.6

EFNN 81.0 ˘ 6.7 71.0 ˘ 3.9 87.7 ˘ 8.8 89.0 ˘ 7.4

In addition to Table 5.42, Table 5.43 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

112



Table 5.43: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on wine data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 50 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 57.3 ˘ 6.6 89.7 ˘ 5.9 67.8 ˘ 8.6 91.1 ˘ 5.1
1 65.8 ˘ 7.9 55.6 ˘ 2.3 67.7 ˘ 8.8 63.7 ˘ 8.7

1` δ2
t 66.5 ˘ 8.3 59.1 ˘ 7.1 83.3 ˘ 8.2 65.6 ˘ 5.5

2 66.6 ˘ 8.4 67.8 ˘ 9.7 70.4 ˘ 10.9 92.1 ˘ 4.5
10 54.5 ˘ 2.7 89.8 ˘ 6.6 71.8 ˘ 11.3 90.9 ˘ 4.5
100 54.5 ˘ 2.7 91.9 ˘ 3.5 68.4 ˘ 7.5 91.3 ˘ 5.1

2 hidden layers
100 neurons

ReLU

8 72.8 ˘ 7.7 90.8 ˘ 4.9 76.7 ˘ 5.7 90.0 ˘ 5.8
1 70.9 ˘ 5.0 63.5 ˘ 4.5 69.6 ˘ 7.7 68.0 ˘ 9.0

1` δ2
t 73.1 ˘ 6.8 63.5 ˘ 4.5 68.1 ˘ 9.9 71.1 ˘ 8.5

2 70.4 ˘ 9.4 74.4 ˘ 12.4 77.1 ˘ 6.7 90.6 ˘ 4.4
10 72.4 ˘ 8.0 87.3 ˘ 8.3 75.8 ˘ 5.0 90.1 ˘ 5.9
100 72.9 ˘ 8.0 86.9 ˘ 6.4 75.8 ˘ 4.3 90.8 ˘ 6.2

3 hidden layers
50 neurons

Identity

8 66.9 ˘ 4.7 65.2 ˘ 4.9 64.6 ˘ 6.2 89.2 ˘ 4.2
1 65.9 ˘ 2.9 66.6 ˘ 4.1 68.2 ˘ 6.9 64.0 ˘ 3.2

1` δ2
t 68.0 ˘ 11.6 66.6 ˘ 4.1 71.1 ˘ 10.2 64.3 ˘ 5.4

2 64.1 ˘ 10.7 66.7 ˘ 4.1 67.0 ˘ 9.7 65.8 ˘ 9.7
10 66.9 ˘ 4.7 65.9 ˘ 3.3 65.2 ˘ 5.6 89.9 ˘ 4.7
100 66.9 ˘ 4.7 66.5 ˘ 6.0 65.1 ˘ 6.9 88.6 ˘ 5.0

3 hidden layers
50 neurons

ReLU

8 68.6 ˘ 5.6 71.3 ˘ 4.2 81.4 ˘ 11.1 88.9 ˘ 7.5
1 81.0 ˘ 6.7 64.6 ˘ 4.2 87.1 ˘ 8.0 68.0 ˘ 3.1

1` δ2
t 69.1 ˘ 6.1 59.2 ˘ 5.4 79.4 ˘ 12.3 67.2 ˘ 4.1

2 79.7 ˘ 9.4 67.3 ˘ 4.8 70.3 ˘ 18.4 67.6 ˘ 4.5
10 69.7 ˘ 5.8 63.9 ˘ 6.7 80.9 ˘ 8.4 85.5 ˘ 6.8
100 69.1 ˘ 5.7 75.6 ˘ 7.4 80.9 ˘ 8.4 89.6 ˘ 6.3

and BLS algorithm using different λ sequences. Average classification performances

computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

113



SGD optimization methods. The network topologies presented in Table 5.43 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 50 neurons, similar to Table 5.42.

Table 5.44: The number of different hyper-parameter sets used on trials given in
Figure 5.10

λt µ Mini Batch Count Trial Count

8 10´4
1 4
4 5

1 10´4
1 5
4 5

1` δ2
t

10´4
1 5
4 5

2

10´4
1 4
4 3

10´6
1 3
4 3

10 10´4
1 6
4 2

100 10´4
1 9
4 6

Lastly, Figure 5.10 and Table 5.44 presented. Figure 5.10 shows the change of av-

erage cross entropy with respect to iterations, when the training trials are done with

standard backpropagation algorithm and BLS algorithm with different λ sequences to

train EFNNs with network topology consisting 3 hidden layers each of which contains

50 many neurons, and ReLU activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.43. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.10 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.44 instead

114



of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

Figure 5.10: The change of average cross entropy with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 3 hidden layered EFNNs whose hidden layers con-

sist of 50 neurons with ReLU activation function over wine data set.

115



5.3.3.9 Yeast Data Set

Table 5.45 presents the average classification accuracies are achieved by feed-forward

neural networks (FNN) and ef-operator based neural networks (EFNN) on yeast data

set. FNNs trained using only standard backpropagation algorithm, while EFNNs

trained with backpropagation with line search (BLS) with different λ sequences in

addition to standard backpropagation algorithm. The average classification accuracy

presented on table 5.45 for different network topology, optimizer, and objective func-

tion triplets for EFNNs calculated using results of both standard backpropagation al-

gorithm and BLS algorithm. The table 5.45 contains two different network topologies

which are 2 hidden layers each of which contains 100 neurons and 3 hidden layers

each of which contains 100 neurons.

Table 5.45: Average test classification accuracy achieved by classic feed-forward neu-
ral networks (FNN) and ef operator based neural networks (EFNN) when 2 hidden
layered networks whose hidden layers contain 100 many neurons, and 3 hidden lay-
ered networks whose hidden layers contain 100 many neurons employing identity and
ReLU activation functions trained on yeast data set.

MSE Cross entropy
Network Architecture SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

FNN 36.2 ˘ 2.5 47.2 ˘ 2.3 36.0 ˘ 2.1 41.0 ˘ 1.4

EFNN 37.4 ˘ 3.5 56.5 ˘ 2.9 35.9 ˘ 2.0 56.9 ˘ 2.1

2 hidden layers
100 neurons

ReLU

FNN 34.6 ˘ 2.3 44.0 ˘ 1.3 35.2 ˘ 2.1 41.0 ˘ 2.6

EFNN 36.8 ˘ 2.9 53.6 ˘ 2.9 37.0 ˘ 2.0 52.7 ˘ 3.1

3 hidden layers
100 neurons

Identity

FNN 32.6 ˘ 2.5 42.2 ˘ 2.3 31.7 ˘ 1.6 38.7 ˘ 2.3

EFNN 54.9 ˘ 3.8 57.3 ˘ 2.3 54.2 ˘ 3.4 57.0 ˘ 2.2

3 hidden layers
100 neurons

ReLU

FNN 34.2 ˘ 2.0 44.7 ˘ 1.4 33.1 ˘ 1.5 43.8 ˘ 1.2

EFNN 55.6 ˘ 3.5 57.1 ˘ 2.5 36.6 ˘ 3.4 58.4 ˘ 1.9

116



Table 5.46: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1 ` δ2

t where δ “ 10´8 on yeast data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 100 many neurons and 3 hidden layered networks whose hidden layers
contain 100 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
100 neurons

Identity

8 37.4 ˘ 3.3 56.9 ˘ 2.3 35.9 ˘ 2.0 56.8 ˘ 2.2
1 37.4 ˘ 3.5 55.3 ˘ 2.6 35.9 ˘ 2.0 56.7 ˘ 4.2

1` δ2
t 37.4 ˘ 3.5 56.4 ˘ 3.4 35.9 ˘ 2.0 56.4 ˘ 3.6

2 37.4 ˘ 3.3 55.2 ˘ 3.5 35.9 ˘ 2.0 56.8 ˘ 2.1
10 37.4 ˘ 3.3 55.4 ˘ 3.4 35.9 ˘ 2.0 57.0 ˘ 2.3
100 37.4 ˘ 3.3 55.0 ˘ 3.4 35.9 ˘ 2.0 57.0 ˘ 2.1

2 hidden layers
100 neurons

ReLU

8 36.4 ˘ 2.0 54.1 ˘ 3.7 37.6 ˘ 2.5 52.8 ˘ 3.1
1 35.2 ˘ 2.9 55.8 ˘ 2.9 37.3 ˘ 2.6 50.9 ˘ 3.0

1` δ2
t 35.3 ˘ 3.1 56.6 ˘ 3.7 37.0 ˘ 2.9 51.7 ˘ 4.0

2 36.8 ˘ 3.1 54.9 ˘ 3.1 37.4 ˘ 2.9 53.7 ˘ 3.6
10 37.1 ˘ 3.2 55.5 ˘ 1.7 37.4 ˘ 2.8 54.4 ˘ 4.1
100 36.7 ˘ 3.1 53.2 ˘ 3.1 37.1 ˘ 2.7 54.8 ˘ 3.5

3 hidden layers
100 neurons

Identity

8 55.3 ˘ 3.3 56.7 ˘ 2.5 54.3 ˘ 3.3 57.5 ˘ 2.9
1 54.6 ˘ 3.7 56.8 ˘ 3.0 54.5 ˘ 3.3 55.6 ˘ 3.5

1` δ2
t 54.2 ˘ 3.0 54.3 ˘ 3.1 54.4 ˘ 3.4 55.8 ˘ 2.8

2 55.4 ˘ 3.4 55.4 ˘ 3.7 54.0 ˘ 3.5 57.6 ˘ 2.9
10 55.0 ˘ 3.3 55.1 ˘ 3.3 54.0 ˘ 3.4 58.0 ˘ 2.8
100 55.3 ˘ 3.3 55.0 ˘ 3.5 54.0 ˘ 3.4 58.4 ˘ 2.8

3 hidden layers
100 neurons

ReLU

8 54.9 ˘ 2.9 57.3 ˘ 2.1 38.3 ˘ 3.2 57.3 ˘ 2.4
1 55.8 ˘ 2.2 56.6 ˘ 2.5 37.5 ˘ 3.9 56.4 ˘ 3.7

1` δ2
t 55.1 ˘ 1.7 57.1 ˘ 3.4 37.9 ˘ 3.5 57.3 ˘ 3.3

2 55.7 ˘ 3.0 56.0 ˘ 2.8 36.8 ˘ 3.5 58.8 ˘ 1.8
10 55.9 ˘ 3.0 57.8 ˘ 2.4 37.1 ˘ 3.4 57.1 ˘ 3.1
100 55.5 ˘ 3.4 56.1 ˘ 2.6 36.8 ˘ 3.4 57.2 ˘ 2.6

In addition to Table 5.45, Table 5.46 is given which presents the average classification

performances achieved by EFNNs trained with standard backpropagation algorithm

and BLS algorithm using different λ sequences. Average classification performances

117



computed by employing ReLU and identity activation functions trained with mean

squared error (MSE) and average cross entropy objective functions using ADAM and

SGD optimization methods. The network topologies presented in Table 5.46 are 2

hidden layers each of which containing 100 neurons and 3 hidden layers each of

which contains 100 neurons, similar to Table 5.45.

Table 5.47: The number of different hyper-parameter sets used on trials given in
Figure 5.11

λt µ Mini Batch Count Trial Count

8 10´4
1 11
4 2

1 10´4 4 7

1` δ2
t

10´4 4 5

2 10´4
1 6
4 1

10 10´4
1 7
4 1

100 10´4
1 7
4 2

Lastly, Figure 5.11 and Table 5.47 presented. Figure 5.11 shows the change of mean

squared error with respect to iterations, when the training trials are done with stan-

dard backpropagation algorithm and BLS algorithm with different λ sequences to

train EFNNs with network topology consisting 3 hidden layers each of which contains

100 many neurons, and ReLU activation function using ADAM optimization method.

These trials achieve maximal training performances when training the EFNNs using

standard backpropagation algorithm and BLS algorithm with different λ sequences.

Also, these trials are used to compute average classification accuracy presented at

Table 5.46. Trials for a specific λ sequences differ by the hyper-parameters of opti-

mization method and initial parameter set. Figure 5.11 contains a lot of training trials

resulting hard to read legend. Consequently, we decide to present Table 5.47 instead

of a legend which presents the number of trials employing specific hyper-parameter

set for each λ sequences.

118



Figure 5.11: The change of mean squared error with respect to iteration for trials

achieving maximal classification performance on training data when standard back-

propagation, λt “ 8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, and λt “ 100,

and BLS with exponentially decaying λ, λt “ 1`δ2
t where δ “ 1´10´8, algorithms

with ADAM are used for training 3 hidden layered EFNNs whose hidden layers con-

sist of 100 neurons with ReLU activation function over yeast data set.

119



5.3.4 Discussion

Experiments showed that proposed version of backpropagation algorithm can match

the classification accuracies of standard backpropagation algorithm depending on

choice of λ sequence. Results indicates that proposed version fails mostly either

when ADAM optimizer used or when λ values close to 1 used. Change of loss func-

tion graphics, figures 5.5, 5.6, 5.7, 5.8, 5.4, 5.10, indicates that when mbdalambda

values close to 1, decrease on loss function is greater than standard backpropagation.

However, these sequences cause algorithm to converge a non-desired local optimum,

decreasing loss too quickly and preventing update to neighbor partitions which can

lead to better optima points. The problem may solved using different initial parame-

ters. However, this may not solve the problem unless initial parameters sampled from

different distributions. Experiments showed that this problem can also be solved with

usage constants greater than 1 instead of exponentially decaying sequences. Fail-

ure of the algorithm when ADAM optimizer is used can be explained by the fact

that implementation of ADAM optimizer used on training trials is not aware of the

line search step. ADAM method relies previous gradients to estimate new update

values including magnitude of previous gradients as they affect the first and second

moments. However, the line search step changes the magnitude of the update in-

validating the moments calculated by the ADAM method using previous gradients.

This is especially true, when exponentially decaying sequences or sequence of 1s are

used, as most update requires shrinkage on update magnitude to prevent loss function

from increasing. This problem can be solved with modification on ADAM method.

However, necessary calculations are not available at the moment.

Comparisons between average classification performances achieved by FNNs and

EFNNs indicates that EFNNs might be more suitable for these data sets than FNNs.

However, parameters used for training FNNs are selected using performances of

EFNNs. Consequently, FNNs may not be trained properly. FNNs should be trained

with more hyper-parameters, before a conclusion can be drawn.

120



5.4 MNIST Data Set

MNIST data set is a popular data set used on testing ANNs. It consists of 70,000

hand-written digit images divided as 60,000 training sample and 10,000 test sample.

Each image in the dataset is a 28x28 gray scale image with intensities represented

with real numbers in the range [0, 1]. Images converted to 1-d vectors of size 784

for experiments. Class distribution in training samples and test samples given in

table 5.48. The state of the art classification accuracy on the MNIST data set is

99.79%. This classification accuracy achieved by the DropConnect, a special type of

ANN [86].

Table 5.48: Class distribution for mnist data set

Class index Count in traning data Count in test data

0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

5.4.1 Experimental Design

MNIST is a multi-class classification problems. This classification problem formu-

lated as the function approximation from feature vectors to one-hot-vector-encoding

of class labels. Experiments for MNIST data sets consists of training trials which are

performed using multiple network topologies, activation functions, optimizers and

loss functions,to approximate these functions. These experiments uses same parame-

ters as experiments for UCI data sets except topologies and number of mini-batches.

The selected topologies are limited to following for these training trials,

121



‚ 2 hidden layers each of which containing 500 neurons,

‚ 2 hidden layers each of which containing 800 neurons,

‚ 3 hidden layers each of which containing 800 neurons.

Number of mini-batches selected from 1 and 60 instead of 1 and 4. Experiments com-

pares the standard backpropagation algorithm and BLS using different λ sequences.

Five different λ sequences used for evaluation. 4 of 5 different λ sequences are con-

stants and other one is exponentially decaying sequence. Constant values are 1, 2,

10, and 100. The constant value 1 does not allow any increase on loss, which results

strict decrease on loss, if no mini-batch is used. The constant value 2 allows small

increments on loss, which may allow algorithm to explore more regions during any

part of the training without allowing divergence through prevention of visiting “bad”

partitions. The constant value 10 is more relaxed version and the constant value 100

should behave almost same as standard backpropagation in most situations. Expo-

nentially decaying sequence employed is

λt “ 1` δ2
t

, (5.11)

where δ is 1´ 10´8. The exponentially decaying sequence satisfies the restriction

lim
TÑ8

T
ź

t“1

λt, (5.12)

is exists and finite whenever δ ă 1 as

1´ δ2
N`1

“ p1´ δq
N
ź

t“0

p1` δ2
t

q, (5.13)

for every N P Z`. Also, sequence consisting of only 1s satisfies the restriction. Al-

though, other three sequences do not satisfy the restriction, violation of the restriction

is not an issue as training trials done for at most 1,000 iterations.

Similar to UCI data sets, two activation functions used with these networks which are

identity and ReLU functions. Resulting EFNNs trained with respect to mean square

error and average cross entropy loss functions using ADAM and SGD optimizers. If

122



average cross entropy used as loss function, then outputs of EFNNs normalized to

interval [0, 1] using softmax function.

Hyper-parameters for SGD are learning rate and number of mini-batches and hyper-

parameters for ADAM are learning rate, number of mini-batches, β1, β2, and ε. β1, β2

and ε is not optimized, instead default values, suggested by original authors [48] used

which are 0.9, 0.99, and 10´8, respectively. Learning rates for optimizers are selected

from 10´4, 10´6, 10´8, 10´10 using classification accuracy over training data. 10

randomly sampled initial parameter sets are selected for each network topology using

following normal distributions

N
´

0,
2

nin ` nout

¯

, (5.14)

and

N p0, 10´4q, (5.15)

where nin is number of neurons in the previous layer, and nout is number of neurons

in the current layer as suggested by by Glorot et al. [33]. Weights are sampled inde-

pendently from the distribution (5.14) and biases are sampled independently from the

distribution (5.15).

Full grid-search over hyper-parameters is done with two different initial points for

standard backpropagation algorithm to determine best working network architecture,

activation function, loss function and optimizer combinations. Among these trials

100 of them are selected for further trials according to average maximal training ac-

curacy achieved over two initial parameter sets including all network topology, ac-

tivation function, loss function and optimizer quadruples, due to time and resource

constraints. Other initial parameters are tested using configurations of these trials for

standard backpropagation algorithm. BLS with different λ sequences are also tested

using configurations of these 100 trials over 10 initial parameter sets.

5.4.2 Results

Table 5.49 presents average test accuracy obtained from different trials by each back-

propagation version using different hyper-parameters and initial parameters for each

123



network topology, activation function, optimizer and loss function quadruple. Trials

selected according to maximum training performance achieved during training. The

selection done as follow, maximal training accuracy computed for each trial. After-

wards, maximum value, Mi, among these accuracies selected for each loss function,

network topology, activation function and optimizer quadruple. The trials achieving

maximal training accuracy at least 0.99Mi included in the calculation of averages.

The test accuracy for each of these trials, taken from the iteration where maximal

training accuracy achieved. If there exists more than one such iteration, then the

iteration with lowest training loss is taken. Networks with 2 hidden layers each con-

taining 500 neurons omitted as their performance was inferior to networks with 2

hidden layers each containing 800 neurons from Table 5.49.

Figure 5.12 shows the change of MSE during training of one particular triplet con-

sisting ADAM optimizer, ReLU activation function and topology consisting 2 hidden

layers each containing 800 neurons for each backpropagation version. Graph includes

only the trials selected for Table 5.49.

5.4.3 Discussion

The experiments for MNIST data set, unlike the experiments for UCI data sets, indi-

cate very similar test accuracies to standard backpropagation. In fact, BLS performs

slightly better than standard backpropagation algorithm. However, effects of selec-

tion of λ over different network topologies is not consistent. Figure 5.12 shows that

change of MSE on training data is very similar on each version. The loss initially de-

creases and achieves a minimum value around 200th iteration, before MSE begins to

fluctuate. Fluctuations exists, even when λ taken as constant 1, due to usage of mini-

batches. However, one important issue to notice that hyper-parameters and initial

parameters used on trials of BLS are selected according to the performances of trials

with standard backpropagation. Consequently, standard backpropagation expected to

work well with these parameters, while BLS could have failed. BLS may also work

with other parameters where standard backpropagation failed. However, this claim

requires further experiments for verification.

124



Table 5.49: Test classification accuracy achieved by standard backpropagation, λt “
8, BLS with constant λs, λt “ 1, λt “ 2, λt “ 10, λt “ 100 and BLS with exponen-
tially decaying λ, λt “ 1` δ2

t where δ “ 10´8 on MNIST data set, while optimizing
mean squared error (MSE) and cross entopy using ADAM and SGD optimizers with
ReLU and identity activation functions for 2 hidden layered networks whose hidden
layers contain 800 many neurons and 3 hidden layered networks whose hidden layers
contain 800 many neurons.

MSE Cross entropy
Network λt SGD ADAM SGD ADAM

2 hidden layers
800 neurons

Identity

8 87.9 ˘ 0.1 91.0 ˘ 0.2 92.5 ˘ 0.0 93.3 ˘ 0.2
1 87.8 ˘ 0.1 91.1 ˘ 0.2 92.5 ˘ 0.0 93.2 ˘ 0.2

1` δ2
t 87.8 ˘ 0.1 91.0 ˘ 0.2 92.5 ˘ 0.0 93.3 ˘ 0.2

2 88.0 ˘ 0.1 91.0 ˘ 0.2 92.5 ˘ 0.0 93.3 ˘ 0.2
10 88.0 ˘ 0.1 91.0 ˘ 0.2 92.5 ˘ 0.0 93.4 ˘ 0.2
100 88.0 ˘ 0.1 91.0 ˘ 0.2 92.5 ˘ 0.0 93.4 ˘ 0.2

2 hidden layers
800 neurons

ReLU

8 97.3 ˘ 0.0 98.3 ˘ 0.2 95.2 ˘ 0.1 97.8 ˘ 0.2
1 97.3 ˘ 0.1 98.6 ˘ 0.0 95.2 ˘ 0.0 97.8 ˘ 0.1

1` δ2
t 97.3 ˘ 0.1 98.6 ˘ 0.0 95.2 ˘ 0.0 97.8 ˘ 0.1

2 97.3 ˘ 0.1 98.3 ˘ 0.1 95.2 ˘ 0.0 97.6 ˘ 0.4
10 97.3 ˘ 0.1 98.3 ˘ 0.2 95.2 ˘ 0.0 97.7 ˘ 0.2
100 97.3 ˘ 0.1 98.3 ˘ 0.2 95.2 ˘ 0.0 97.7 ˘ 0.3

3 hidden layers
800 neurons

Identity

8 88.0 ˘ 0.1 90.7 ˘ 0.1 92.7 ˘ 0.1 92.7 ˘ 0.2
1 90.4 ˘ 0.1 91.1 ˘ 0.4 92.7 ˘ 0.1 92.7 ˘ 0.2

1` δ2
t 87.9 ˘ 0.1 91.1 ˘ 0.2 92.7 ˘ 0.1 92.7 ˘ 0.1

2 87.9 ˘ 0.1 90.7 ˘ 0.2 92.7 ˘ 0.1 92.7 ˘ 0.3
10 87.9 ˘ 0.1 90.7 ˘ 0.2 92.7 ˘ 0.1 92.7 ˘ 0.3
100 87.9 ˘ 0.1 90.7 ˘ 0.2 92.7 ˘ 0.1 92.7 ˘ 0.3

3 hidden layers
800 neurons

ReLU

8 98.4 ˘ 0.0 97.7 ˘ 0.6 98.2 ˘ 0.1 98.0 ˘ 0.3
1 97.6 ˘ 0.2 97.9 ˘ 0.3 98.2 ˘ 0.0 98.0 ˘ 0.3

1` δ2
t 97.8 ˘ 0.1 97.9 ˘ 0.3 98.2 ˘ 0.0 98.0 ˘ 0.3

2 98.3 ˘ 0.1 98.0 ˘ 0.4 98.2 ˘ 0.1 98.0 ˘ 0.4
10 98.3 ˘ 0.1 97.9 ˘ 0.4 98.2 ˘ 0.1 98.0 ˘ 0.3
100 98.3 ˘ 0.1 97.7 ˘ 0.5 98.2 ˘ 0.1 98.0 ˘ 0.3

125



Figure 5.12: The change of mean squared error on training data with respect to iter-

ations for trials with maximal classification accuracy on training data with standard

backpropagation using 2 hidden layers, each of which containing 800 neurons. ReLU

activation function and ADAM optimizer is used for MNIST data set.

126



5.5 Chapter Summary

Standard backpropagation algorithm and backpropagation with line search algorithm

(BLS) with various λ sequences are empirically compared in this chapter. Exper-

iments are done over linear function learning problem which is discussed in Sec-

tion 4.1, XOR problem, 9 multi-class classification tasks from UCI data sets and

MNIST data set to compare the performances of EFNN with classical backpropa-

gation and BLS. Experiments verified that proposed algorithm converges. However,

this can be a limiting factor especially when exponentially decaying sequences or

constant 1 are used. Experiments showed that these kinds of sequences limits the

training procedure to few partitions causing early termination. The early terminations

may fail the training of neural networks. Experiments also showed that this problem

can be solved using constant λ sequences greater than 1. Usage of relatively small

constants may sometimes fail to train. However, they are usually more successful

than sequences which do not allow increase on loss in later iterations. Experiments

also verified that, BLS becomes exactly like standard algorithm when larger values of

λ are used, as expected.

This chapter also includes a brief comparison between performances of feed forward

neural networks (FNN) and ef-operator based neural networks (EFNN). Comparisons

are done over the selected UCI data sets and comparisons indicates that EFNNs can

achieve similar classification performance to FNNs, when the same number of neu-

rons and hidden layers are used. In fact, our experiments indicate that EFNNs might

perform slightly better than FNNs in some cases.

127



128



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis concerns with neural network architectures based on a multiplication free

implementable operator, called ef operator. Multiplication free implementable na-

ture of the network has a potential to provide energy efficiency, and makes the net-

work suitable for systems where energy is a limited resource. Previous works on the

ef operator mostly concerned with applicability of the operator to image and signal

processing problems. Some preliminary studies [5, 4] applied ef-operators to neu-

ral networks. Initial study [5] failed to attain state-of-the art classification accuracy

with 10% loss on classification accuracy. A recent study in [4] reports improved re-

sults of [5] and attained near state-of-the art classification accuracies. Ef-operator

and methods relying on ef-operator become viable option for an energy efficient re-

placement of artificial neural networks in light of the results of [5] and [4]. These

studies simply replaces the inner product the argument of the activation functions and

applied the standard training methodologies of classical neural networks. Although,

the suggested training methodologies work in the practice, they have a fundamental

problems which may make impossible to use these networks on more complicated

data sets. One of the major problems emerge from the non-differentiable nature of

ef-operator. Ef-operator introduces a jump when input is changed from a positive val-

ued number to a negative valued number, which causes a sudden change on computed

mappings in small neighborhoods. This thesis inspects the dependency between the

129



parameters and mappings computed by the suggested networks, and proposed a pos-

sible solution to solve the discontinuity problem.

In this thesis, A new neural network, called ef-operator based neural network (EFNN)

based on ef-operator is proposed. The suggested network is based on the already ex-

isting architecture based on ef-operator, called additive neural networks [4]. Additive

neural networks [4] introduced scaling parameters to approximate arbitrary Lebesgue

integrable functions. Scaling parameters requires multiplication on each hidden lay-

ers which decreases the efficiency gained by avoidance of classic vector multiplica-

tion. EFNNs use the classic vector multiplication in the first and last hidden layers,

and ef-operator on remaining hidden layers. This architecture allows EFNNs to ap-

proximate any Lebesgue integrable function with a right choice of activation func-

tion and energy efficiency increases with the increasing number of hidden layers.

The suggested design is more suitable for deeper networks than additive neural net-

works. The representation capabilities of EFNNs is inspected specifically for identity

and ReLU activation functions. We show that if sufficiently large number of neu-

rons are used, then any Lebesgue integrable function can be approximated arbitrarily

well. The multiplication free implementable nature of ef operator and representa-

tion power of EFNNs with simple activation functions, such as, identity and ReLU,

allows EFNNs to be energy efficient without usage of low precision floating points

and approximations. In addition to, representation capabilities of EFNNs, the rela-

tion between parameters of EFNNs and resulting mappings analyzed. Our analyze

showed that parameter space can be splited into partitions, so that mappings com-

puted in each partition computes similar functions with respect to the input data. We

showed that, if the activation function satisfies a weaker version of linearity which

we call sign-wise linearity, then these partitions becomes convex. Both identity and

ReLU functions which are our focus as activation function, satisfies sign-wise lin-

earity conditions. Furthermore, output of the last hidden layer immediately before

output layer depends linearly on the parameters at input data. Also, our inspection

showed that mappings computed in neighbor partitions can be drastically different.

This observation combined with the observation of some of these partitions are not

closed, presents a drawback for convergence during the training. If local optimum

130



located on the boundary, then it is not attainable and slightly large updates can result

change of partition causing drastic changes on loss. Sudden increase on the loss can

cause divergence in backpropagation algorithm as sudden increase caused by drastic

change on computed mapping which can also result in drastic change on directions

of derivatives.

We propose a modified version of backpropagation algorithm, called backpropaga-

tion with line search, (BLS). BLS algorithm makes a line search in the direction of

update vector to find an update value whose loss is bounded by λtLt where Lt is

current loss. The convergence and performance of BLS algorithm compared experi-

mentally with standard backpropagation algorithm, in Chapter 5, using various data

sets and various choice of λ sequences. Experiments show that effectiveness of sug-

gested method heavily depends on the problem, architecture as well as the choice of

optimizer. Suggested method is capable of matching the performances achieved by

standard backpropagation in most cases, even though experiments biased toward the

standard backpropagation algorithm. However, there are cases, where the suggested

method cannot train EFNNs properly. Experiments showed that training failures usu-

ally happens when small λ values are used in conjunction with ADAM optimizer.

When BLS algorithm fail to train EFNNs, algorithm usually terminates very early

around 100th iteration. The early termination of BLS algorithm in case of failure to

train, allows us to try more parameters instead of waiting a bad result. If decaying λ

values fail to train EFNN, then small constant λ values can be used instead. Usage of

small constant λ values permits training procedure to explore other regions, always

allowing to it to reach more optimal points.

6.2 Future Work

Ef operator is a relatively new operator and usage of it in the context of the neural

networks was very limited until recently. This work suggests and analyzes a neural

network architecture based on ef-operator, called EFNN. However, there are many

theoretical and practical questions remained to be answered. We showed that EFNNs

131



are capable of approximating Lebesgue integrable functions for specific activation

functions. However, we do not know the representation capabilities of EFNNs in

case of other activation functions. Also, we manage to show the representation ca-

pabilities of EFNNs for 4 or more hidden layered architectures. 2 hidden layered

architectures do not use ef-operator, so we are not interested on them, but 3 hidden

layered architectures requires more attention. There are two important questions to

be answered regarding the representation capabilities of EFNNs. These questions are,

can EFNNs approximate continuous functions arbitrarily well with a suitable choice

of the activation function, and how much neuron is necessary to approximate a func-

tion with given degree of error. Practical concerns include the comparison between

performances of EFNNs and performances of other efficient neural networks, improv-

ing training methods to estimate better local minima and generalizing the EFNN to

different neural network architectures, such as convolutional networks and recurrent

neural networks.

This thesis experimentally evaluated the proposed training algorithms. However, data

sets used on the experiments were relatively small and simple. Experiments should

be repeated with more complex data sets to demonstrate effectiveness of proposed

algorithm. Also, experiments on this thesis solely focused on comparison between

standard backpropagation algorithm and BLS. Future works may include experimen-

tal comparisons between EFNNs and other energy efficient neural network variants,

such as, neural networks employing binary weights and neural networks relying on

approximate computation of neurons and activation functions. Another set of possi-

ble experiments can be done to determine how much energy gained by the usage of

EFNNs with respect to classical ANNs.

An important direction for the future works is developing an algorithm to train EFNNs

using properties of partitions defined on Section 3.4. We demonstrated that the out-

put of last hidden layer before the output layer linearly depends on the parameters at

training data, in lemma 3.4.9. Also, the output of the output layer linearly depends

on the parameters by definition. These two observation can be combined to develop

a two-phase training algorithm which trains output layer in one phase and trains re-

132



maining layers in other phase in a partition. This kind of algorithms will require

efficient sampling of partitions which might be hard as there is exponentially many

partitions exist. A probabilistic selection algorithm can efficiently train EFNNs in

multiple partitions and select “best” trained network. This algorithm is not presented

in this thesis, because we do not know any efficient probabilistic selection algorithm

for these partitions, at the moment.

133



134



REFERENCES

[1] A. M. Abdelsalam, J. Langlois, and F. Cheriet. Accurate and efficient hyper-
bolic tangent activation function on fpga using the dct interpolation filter. arXiv
preprint arXiv:1609.07750, 2016.

[2] A. M. Abdelsalam, J. P. Langlois, and F. Cheriet. A configurable fpga imple-
mentation of the tanh function using dct interpolation. pages 168–171, 2017.

[3] S. Aeberhard, D. Coomans, and O. De Vel. Comparison of classifiers in high di-
mensional settings. Dept. Math. Statist., James Cook Univ., North Queensland,
Australia, Tech. Rep, (92-02), 1992.

[4] A. Afrasiyabi, O. Yildiz, B. Nasir, F. T. Yarman-Vural, and A. E. Çetin. Energy
saving additive neural network. CoRR, abs/1702.02676, 2017.

[5] C. E. Akbaş, A. Bozkurt, A. E. Çetin, R. Çetin-Atalay, and A. Üner.
Multiplication-free neural networks. In 2015 23th Signal Processing and Com-
munications Applications Conference (SIU), pages 2416–2418. IEEE, 2015.

[6] C. E. Akbaş, O. Günay, K. Taşdemir, and A. E. Çetin. Energy efficient cosine
similarity measures according to a convex cost function. Signal, Image and
Video Processing, 11(2):349–356, 2017.

[7] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Bal-
las, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Berg-
eron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-
Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.-L. Carrier,
K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté,
A. Courville, Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Diele-
man, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Erhan, Z. Fan,
O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham, C. Gulcehre,
P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,
K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent,
S. Lee, S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz,
J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memi-
sevic, B. van Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pas-
canu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth,
P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I. V.

135



Serban, D. Serdyuk, S. Shabanian, E. Simon, S. Spieckermann, S. R. Subra-
manyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian, S. Urban, P. Vin-
cent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu,
L. Xue, L. Yao, S. Zhang, and Y. Zhang. Theano: A Python framework for
fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688,
May 2016.

[8] A. L. Beam. Deep learning 101 - part 1: History and background, Feb 2017.

[9] P. Behrooz. Computer arithmetic: Algorithms and hardware designs. Oxford
University Press, 19:143–204, 2000.

[10] H.-D. Block. The perceptron: A model for brain functioning. i. Reviews of
Modern Physics, 34(1):123, 1962.

[11] A. Blum and R. L. Rivest. Training a 3-node neural network is np-complete. In
Advances in neural information processing systems, pages 494–501, 1989.

[12] T. M. Breuel, A. Ul-Hasan, M. A. Al-Azawi, and F. Shafait. High-performance
ocr for printed english and fraktur using lstm networks. In Document Analysis
and Recognition (ICDAR), 2013 12th International Conference on, pages 683–
687. IEEE, 2013.

[13] A. J. Calise and R. T. Rysdyk. Nonlinear adaptive flight control using neural
networks. IEEE control systems, 18(6):14–25, 1998.

[14] R. A. Callejas-Molina, V. M. Jimenez-Fernandez, and H. Vazquez-Leal. Digital
architecture to implement a piecewise-linear approximation for the hyperbolic
tangent function. pages 1–4, 2015.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, et al. Dadiannao: A machine-learning supercomputer. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 609–622. IEEE Computer Society, 2014.

[16] Z. Cheng, D. Soudry, Z. Mao, and Z. Lan. Training binary multilayer neu-
ral networks for image classification using expectation backpropagation. arXiv
preprint arXiv:1503.03562, 2015.

[17] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis and
characterization of inherent application resilience for approximate computing.
In Proceedings of the 50th Annual Design Automation Conference, page 113.
ACM, 2013.

[18] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep neural networks
with low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.

136



[19] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep
neural networks with binary weights during propagations. pages 3123–3131,
2015.

[20] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[21] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[22] H. S. Demir and A. E. Cetin. Co-difference based object tracking algorithm for
infrared videos. In 2016 IEEE International Conference on Image Processing
(ICIP), pages 434–438. IEEE, 2016.

[23] D. H. Deterding. Speaker normalisation for automatic speech recognition. PhD
thesis, University of Cambridge, 1990.

[24] Z. Du, A. Lingamneni, Y. Chen, K. Palem, O. Temam, and C. Wu. Leveraging
the error resilience of machine-learning applications for designing highly energy
efficient accelerators. In Design Automation Conference (ASP-DAC), 2014 19th
Asia and South Pacific, pages 201–206. IEEE, 2014.

[25] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[26] R. Eldan and O. Shamir. The power of depth for feedforward neural networks.
In Conference on Learning Theory, pages 907–940, 2016.

[27] I. W. Evett and J. S. Ernest. Rule induction in forensic science. central re-
search establishment. home office forensic science service. aldermaston. Read-
ing, Berkshire RG7 4PN, 1987.

[28] A. W. C. Faria, L. P. de Aguiar, D. d. S. D. Lara, and A. A. F. Loureiro. Compar-
ative analyses of power consumption in arithmetic algorithms implementation.
Revista de Informática Teórica e Aplicada, 18(2):234–250, 2011.

[29] L. V. Fausett. Fundamentals of neural networks: architectures, algorithms, and
applications. Prentice-Hall, 1994.

[30] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of human genetics, 7(2):179–188, 1936.

[31] P. W. Frey and D. J. Slate. Letter recognition using holland-style adaptive clas-
sifiers. Machine learning, 6(2):161–182, 1991.

137



[32] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodríguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro, et al. A machine learning
approach to visual perception of forest trails for mobile robots. IEEE Robotics
and Automation Letters, 1(2):661–667, 2016.

[33] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 249–256, 2010.

[34] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning
with limited numerical precision. pages 1737–1746, 2015.

[35] D. Hammerstrom. A vlsi architecture for high-performance, low-cost, on-chip
learning. In 1990 IJCNN International Joint Conference on Neural Networks,
pages 537–544. IEEE, 1990.

[36] D. O. Hebb. The organization of behavior: A neuropsychological approach.
John Wiley & Sons, 1949.

[37] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acous-
tic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[38] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[39] K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, 1962.

[40] M. Höhfeld and S. E. Fahlman. Probabilistic rounding in neural network learn-
ing with limited precision. Neurocomputing, 4(6):291–299, 1992.

[41] J. L. Holi and J.-N. Hwang. Finite precision error analysis of neural network
hardware implementations. IEEE Transactions on Computers, 42(3):281–290,
1993.

[42] P. Horton and K. Nakai. A probabilistic classification system for predicting the
cellular localization sites of proteins. In Ismb, volume 4, pages 109–115, 1996.

[43] K. Hwang and W. Sung. Fixed-point feedforward deep neural network design
using weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS), 2014 IEEE
Workshop on, pages 1–6. IEEE, 2014.

[44] Y. Ito. Approximation capability of layered neural networks with sigmoid units
on two layers. Neural Computation, 6(6):1233–1243, 1994.

138



[45] S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target vo-
cabulary for neural machine translation. arXiv preprint arXiv:1412.2007, 2014.

[46] D. E. Khodja, A. Kheldoun, and L. Refoufi. Sigmoid function approximation
for ann implementation in fpga devices. 2010.

[47] M. Kim and P. Smaragdis. Bitwise neural networks. arXiv preprint
arXiv:1601.06071, 2016.

[48] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[50] Y. Le Cun. Learning process in an asymmetric threshold network. In Disor-
dered systems and biological organization, pages 233–240. Springer, 1986.

[51] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[53] M. Lichman. UCI machine learning repository, 2013.

[54] Y. C. Lim and B. Liu. Design of cascade form fir filters with discrete valued
coefficients. IEEE Transactions on Acoustics, Speech, and Signal Processing,
36(11):1735–1739, 1988.

[55] A. Lingamneni, A. Basu, C. Enz, K. V. Palem, and C. Piguet. Improving energy
gains of inexact dsp hardware through reciprocative error compensation. In
Proceedings of the 50th Annual Design Automation Conference, page 20. ACM,
2013.

[56] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini. Fast Neural Networks With-
out Multipliers. IEEE Transactions on Neural Networks, 4(1):53–62, 1993.

[57] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[58] K. Mehrotra, C. K. Mohan, and S. Ranka. Elements of artificial neural net-
works. The MIT Press, 1997.

[59] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černockỳ. Strategies for
training large scale neural network language models. In Automatic Speech

139



Recognition and Understanding (ASRU), 2011 IEEE Workshop on, pages 196–
201. IEEE, 2011.

[60] M. L. Minsky and S. Papert. Perceptions: An Introduction to Computational
Geomry. MIT press, 1969.

[61] T. M. Mitchell. Machine learning. Burr Ridge, IL: McGraw Hill, 45(37):81–
126, 1997.

[62] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy. Design of power-
efficient approximate multipliers for approximate artificial neural networks. In
Computer-Aided Design (ICCAD), 2016 IEEE/ACM International Conference
on, pages 1–7. IEEE, 2016.

[63] K. Nakai and M. Kanehisa. Expert system for predicting protein localization
sites in gram-negative bacteria. Proteins: Structure, Function, and Bioinfor-
matics, 11(2):95–110, 1991.

[64] W. Nash, T. Sellers, S. Talbot, A. Cawthorn, and W. Ford. The population
biology of abalone (haliotis species). Blacklip Abalone (H. rubra) from the
North Coast and Islands of Bass Strait. Sea Fisheries Division Technical Report,
48, 1994.

[65] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[66] A. B. Novikoff. On convergence proofs for perceptrons. Technical report,
STANFORD RESEARCH INST MENLO PARK CALIF, 1963.

[67] M. Panicker and C. Babu. Efficient fpga implementation of sigmoid and bipo-
lar sigmoid activation functions for multilayer perceptrons. IOSR Journal of
Engineering, pages 1352–1356, 2012.

[68] D. B. Parker. Learning logic. 1985.

[69] N. Qian. On the momentum term in gradient descent learning algorithms. Neu-
ral networks, 12(1):145–151, 1999.

[70] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural networks. arXiv preprint
arXiv:1603.05279, 2016.

[71] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation. In Encyclopedia of
database systems, pages 532–538. Springer, 2009.

[72] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

140



[73] S. Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[74] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy. Multiplier-less
artificial neurons exploiting error resiliency for energy-efficient neural comput-
ing. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 145–150. IEEE, 2016.

[75] P. F. Silva, A. R. Marcal, and R. M. A. da Silva. Evaluation of features for leaf
discrimination. In International Conference Image Analysis and Recognition,
pages 197–204. Springer, 2013.

[76] M. R. Spiegel. Schaum’s outline of Theory and problems of advanced calculus.
McGraw-Hill, 1963.

[77] I. Stewart and D. O. Tall. The foundations of mathematics. Oxford University
Press, 2 edition, 2015.

[78] A. Suhre, F. Keskin, T. Ersahin, R. Cetin-Atalay, R. Ansari, and A. E. Cetin. A
multiplication-free framework for signal processing and applications in biomed-
ical image analysis. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1123–1127. IEEE, 2013.

[79] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

[80] R. S. Sutton. Two problems with backpropagation and other steepest-descent
learning procedures for networks. In Proc. 8th annual conf. cognitive science
society, pages 823–831. Erlbaum, 1986.

[81] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9,
2015.

[82] K. Torki, H. Faiedh, C. Souani, and K. Besbes. Digital hardware implemen-
tation of a neural system used for nonlinear adaptive prediction. Journal of
Computer Science, 2:355–362, 2006.

[83] H. Tuna, I. Onaran, and A. E. Cetin. Image description using a multiplier-less
operator. IEEE Signal Processing Letters, 16(9):751–753, 2009.

[84] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural net-
works on cpus. In Proc. Deep Learning and Unsupervised Feature Learning
NIPS Workshop, volume 1, page 4, 2011.

141



[85] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. Axnn: energy-
efficient neuromorphic systems using approximate computing. In Proceedings
of the 2014 international symposium on Low power electronics and design,
pages 27–32. ACM, 2014.

[86] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural
networks using dropconnect. In Proceedings of the 30th international confer-
ence on machine learning (ICML-13), pages 1058–1066, 2013.

[87] P. J. Werbos. Beyond regression: New tools for prediction and analysis in
the behavioral sciences. Doctoral Dissertation, Applied Mathematics, Harvard
University, MA, 1974.

[88] B. A. White and M. I. Elmasry. The digi-neocognitron: a digital neocognitron
neural network model for vlsi. IEEE transactions on Neural Networks, 3(1):73–
85, 1992.

[89] B. Widrow and M. E. Hoff. Adaptive switching circuits. Technical report,
STANFORD UNIV CA STANFORD ELECTRONICS LABS, 1960.

[90] S. G. Wysoski, L. Benuskova, and N. Kasabov. Evolving spiking neural net-
works for audiovisual information processing. Neural Networks, 23(7):819–
835, 2010.

[91] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[92] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. Approxann: an approximate
computing framework for artificial neural network. In Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, pages 701–706.
EDA Consortium, 2015.

142


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Main Contributions
	Outline of the Thesis

	Brief Overview of Artificial Neural Networks
	A Brief History of Artificial Neural Networks
	Perceptron
	Feed-forward Neural Networks
	Energy Efficient Neural Network Variants
	Neural Networks with Restricted Weights
	Approximate Computations

	Representation Capabilities of Artificial Neural Networks
	Training Methods for Artificial Neural Networks
	Back Propagation
	Gradient Descent Optimization Methods
	Stochastic Gradient Descent
	Adaptive Moment Estimation

	Initialization of Neural Networks and Training
	Selection of Topology
	Selection of Activation Function
	Selection of Initial Parameters
	Selection of Objective Functions


	Summary

	EF-operator and Novel Neural Network Architecture Based on EF-operator
	EF-operator
	Partial Derivatives of EF-operator
	Multiplication-free Implementation of EF-operator
	Properties of EF-operator

	EF Neuron and EF Neural Networks
	Representation Capabilities of EF Neural Networks
	Behavior of EF Neural Networks from Parameters Perspective
	Chapter Summary

	Modified Backpropagation Algorithm with Line Search for Training EF Neural Networks
	A case study: Learning Linear Functions
	Backpropagation with Line Search
	Computational Complexity of BLS
	Convergence of Backpropagation with Line Search Algorithm
	Chapter Summary

	Experiments
	Learning Linear Functions Revisited
	Learning XOR Problem by EFNN
	Experimental Design
	Performances of EFNN with Standard Backpropagation and BLS

	Learning UCI Data Sets
	Overview of Data Sets
	Overview of Abalone Data Set
	Overview of Connectionist Bench Data Set
	Overview of Ecoli Data Set
	Overview of Glass Identification Data Set
	Overview of Iris Data Set
	Overview of Leaf Data Set
	Overview of Letter Recognition Data Set
	Overview of Wine Data Set
	Overview of Yeast Data Set

	Experimental Design
	Results
	Abalone Data Set
	Connectionist Bench Data Set
	Ecoli Data Set
	Glass Identification Data Set
	Iris Data Set
	Leaf Data Set
	Letter Recognition Data Set
	Wine Data Set
	Yeast Data Set

	Discussion

	MNIST Data Set
	Experimental Design
	Results
	Discussion

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES

